中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
人工神經網絡理論及應用(英文版)

包郵 人工神經網絡理論及應用(英文版)

作者:文常保
出版社:西安電子科技大學出版社出版時間:2021-08-01
開本: 其他 頁數: 384
本類榜單:教材銷量榜
中 圖 價:¥40.6(7.4折) 定價  ¥55.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

人工神經網絡理論及應用(英文版) 版權信息

人工神經網絡理論及應用(英文版) 本書特色

本書較全面地介紹了人工神經網絡的相關理論及應用。全書包含三篇:人工神經網絡基礎、人工神經網絡理論和人工神經網絡實際應用。**篇包括生物神經網絡理論基礎、人工神經網絡概述、人工神經網絡數理基礎。第二篇包括一些人工神經網絡理論和幾何概念,如感知器、BP神經網絡、RBF神經網絡、ADALINE神經網絡、Hopfield神經網絡、深度卷積神經網絡、生成式對抗網絡、Adaboost神經網絡、SOFM神經網絡。第三篇是基于Simulink的人工神經網絡建模、基于GUI的運用Matlab和Python實現的人工神經網絡設計等。 本書可作為相關專業本科學生和研究生教材,也可作為人工神經網絡理論、實踐及應用的工程技術人員的自學和參考用書。

人工神經網絡理論及應用(英文版) 內容簡介

This book comprehensively and deeply introduces the artificial neural network theory and its application. The book consists of three sections: the foundation of neural network, artificial neural network theory, the design and practical application of neural network. First section mainly includes the theoretical basis of biological neural network, the review of artificial artificial neural network and the mathematical basis of artificial neural network. Second section includes some artificial neural network theory and algorithm, such as Perceptron, BP neural network, RBF neural network, Adaline neural network, Hopfield neural network, deep convolutional learning neural network, generative adversarial network, AdaBoost neural network, Elman neural network and SOFM neural network. Third section is the design and practical application of artificial neural network including the artificial neural network modeling based on Simulink, and artificial neural network design based on GUI using MATLAB and Python. This book can be used as a textbook for undergraduate and graduate students who are engaged in the theory,design and application of artificial neural network. It can also be used as a selfstudy and reference book for professional engineers.

人工神經網絡理論及應用(英文版) 目錄

Section 1 Foundation of neural network Chapter 1 Theoretical basis of biological neural network 2 1.1 Structure and function of biological neurons 2 1.2 Electrical activity of the nervous system 5 1.3 Information storage of human brain 9 1.4 Human brain and computer 11 Exercises 16 References 17 Chapter 2 Review of artificial neural network 18 2.1 Development history of artificial neural network 18 2.2 Characteristics of artificial neural network 28 2.3 Applications of artificial neural network 30 Exercises 38 References 39 Chapter 3 Mathematical basis of artificial neural network 40 3.1 Neuron model 40 3.1.1 Symbol description 40 3.1.2 Single input neuron 41 3.1.3 Transfer function 41 3.1.4 Multiple input neurons 45 3.2 Derivatives 45 3.3 Differential 47 3.4 Integrals 47 3.5 Gradient 48 3.6 Determinant 49 3.7 Matrices 50 3.7.1 Concept 50 3.7.2 Operation of matrices 51 3.7.3 Operational properties of matrices 51 3.8 Vector 52 3.9 Eigenvalues and eigenvectors 53 3.10 Random events and probabilities 53 3.11 Norm 55 Exercises 57 References 58 Section 2 Theory of artificial neural network Chapter 4 Perceptrons 60 4.1 Introduction 60 4.2 Architecture and principle of perceptron 61 4.2.1 Architecture of perceptron 61 4.2.2 Principle of perceptron 62 4.2.3 Learning strategies of perceptron 64 4.3 Single layer perceptron 65 4.3.1 Single layer perceptron model 65 4.3.2 Function of single layer perceptron 67 4.3.3 Learning algorithm of single layer perceptron 69 4.3.4 Limitations of single layer perceptron 73 4.4 Multilayer perceptron 74 4.4.1 Architecture and principle of multilayer perceptron 74 4.4.2 Functions of multilayer perceptron 75 4.4.3 Multilayer perceptron learning algorithm 78 4.5 Applications 79 4.5.1 Case Ⅰ 79 4.5.2 Case Ⅱ 81 Exercises 85 References 86 Chapter 5 Back Propagation neural network 87 5.1 Introduction 87 5.2 BP neural network architecture 89 5.3 BP algorithm 90 5.3.1 Algorithmic principles 90 5.3.2 Back propagation examples 95 5.4 Shortcomings and improvement of BP algorithm 98 5.4.1 Shortcomings of BP algorithm 98 5.4.2 BP algorithm improvement 102 5.5 Applications 105 5.5.1 Case Ⅰ 105 5.5.2 Case Ⅱ 108 5.5.3 Case Ⅲ 110 Exercises 113 References 114 Chapter 6 RBF neural network 115 6.1 Introduction 115 6.2 Architecture and principle of RBF neural network 116 6.2.1 RBF neuron model 116 6.2.2 RBF neural network architecture 117 6.2.3 Principles of RBF neural network 118 6.3 RBF neural network algorithm 119 6.4 Related problems of RBF neural network 122 6.5 Applications 123 6.5.1 CaseⅠ 123 6.5.2 CaseⅡ 125 Exercises 126 References 127 Chapter 7 Adaline neural network 128 7.1 Introduction 128 7.2 Architecture and principles of Adline 129 7.2.1 Single layer Adaline model 129 7.2.2 Algorithm and principles 130 7.2.3 Multilayer Adaline model 133 7.3 Applications 136 7.3.1 Case Ⅰ 136 7.3.2 Case Ⅱ 138 Exercises 141 References 142 Chapter 8 Hopfield neural network 143 8.1 Introduction 143 8.2 Discrete Hopfield neural network 144 8.2.1 Network architecture 144 8.2.2 Working principles 145 8.2.3 Network stability 146 8.2.4 Network algorithm 148 8.3 Continuous Hopfield neural network 150 8.3.1 Network architecture 151 8.3.2 Network stability 153 8.4 Applications 153 8.4.1 Case Ⅰ 153 8.4.2 Case Ⅱ 156 Exercises 161 References 162 Chapter 9 Deep convolutional neural network 163 9.1 Introduction 163 9.2 Architecture and principle of deep convolution neural network 164 9.2.1 Architecture of deep convolutional neural network 164 9.2.2 Principle of deep convolutional neural network 166 9.3 Some basic deep convolutional neural networks 168 9.3.1 AlexNet 168 9.3.2 VGGNet 168 9.3.3 ResNet 170 9.4 Applications 171 9.4.1 Several application frameworks of deep learning 171 9.4.2 Image recognition based on AlexNet 173 Exercises 177 References 177 Chapter 10 Generative adversarial networks 179 10.1 Introduction 179 10.2 Architecture of GAN 181 10.3 GAN algorithm 182 10.4 Improved GAN 185 10.4.1 DCGAN 185 10.4.2 SGAN 186 10.4.3 InfoGAN 187 10.4.4 CGAN 187 10.4.5 ACGAN 188 10.5 Applications 189 Exercises 191 References 192 Chapter 11 Elman neural network 193 11.1 Introduction 193 11.2 Architecture and principle of Elman neural network 193 11.2.1 Elman neural network architecture 193 11.2.2 Principle of Elman neural network 194 11.3 Learning algorithm of Elman neural network 196 11.4 Stability analysis of Elman neural network 198 11.5 Applications 200 11.5.1 Case Ⅰ 200 11.5.2 Case Ⅱ 203 Exercises 205 References 206 Chapter 12 AdaBoost neural network 207 12.1 Introduction 207 12.2 Architecture and algorithm of AdaBoost network 208 12.2.1 Architecture and principles 208 12.2.2 AdaBoost algorithm 209 12.3 Influence factors in AdaBoost algorithm 211 12.3.1 Training error analysis 211 12.3.2 Loss function in AdaBoost classification 212 12.3.3 Regularization of AdaBoost algorithm 214 12.4 Applications 215 Exercises 222 References 223 Chapter 13 SOFM neural network 224 13.1 Introduction 224 13.2 Architecture of SOFM neural network 225 13.3 Principle and algorithm of SOFM neural network 226 13.3.1 Principle of SOFM neural network 226 13.3.2 SOFM neural network learning algorithm 230 13.4 Applications 230 13.4.1 Case Ⅰ 230 13.4.2 Case Ⅱ 233 Exercises 237 References 238 Section 3 Design and practical application of artificial neural network Chapter 14 Artificial neural network modeling based on Simulink 240 14.1 Introduction 240 14.2 Simulink startup and neural network module library 241 14.2.1 Startup of Simulink 241 14.2.2 Simulink neural network module library 243 14.3 Model setting and operation 247 14.3.1 Module operation 247 14.3.2 Operation of signal line 247 14.3.3 Setting of simulation parameters 248 14.3.4 Setting of common modules 250 14.4 Single neuron modeling 254 14.5 Simulink simulation model of function approximation 256 14.5.1 Model and simulation with unchanged parameters 256 14.5.2 Changing parameters of model and simulation 259 14.6 Applications 263 Exercises 268 References 269 Chapter 15 Design of artificial neural network based on GUI 270 15.1 Introduction 270 15.2 Software architecture design 271 15.3 Creating a project 272 15.3.1 FIG file editor 274 15.3.2 M file editor 276 15.4 Main page design 277 15.5 Interactive parameter setting 280 15.6 Main function design of software 284 15.6.1 Detection and recognition 284 15.6.2 Repair method 296 15.7 Accessibility functions 300 15.8 Help file design 303 Exercises 306 References 306 Chapter 16 Design of artificial neural network based on wxPython 307 16.1 Introduction 307 16.2 Design of software architecture 308 16.3 Application creation 310 16.4 Common controls 312 16.4.1 Static text 312 16.4.2 Dynamic text 313 16.4.3 Button 315 16.4.4 Dialog box 316 16.5 Event processing 319 16.6 Design of main functions of software 320 16.6.1 Face input 321 16.6.2 Face recognition 324 16.7 Help file 326 Exercises 328 References 329 Chapter 17 Deep convolutional neural network application in edge detection with feature reextraction 330 17.1 Introduction 330 17.2 Edge detection with feature reextraction deep convolutional network 332 17.2.1 Network architecture 332 17.2.2 Loss function 333 17.3 Experiments 334 17.3.1 Implementation 334 17.3.2 BSDS500 results 335 17.3.3 Crossdistribution generalization validation 337 17.4 Discussion 338 17.4.1 Residual leaning 338 17.4.2 Feature reextract 340 17.4.3 Feature fusion 341 17.4.4 Loss function 341 17.5 Conclusions 342 Exercises 342 References 343 Appendix A Common properties of GUI objects 344 Appendix B Discription of special charactor formats 355 Appendix C Software codes for chapter 15 356 Appendix D Software codes for chapter 16 361
展開全部
商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 查分易-成绩发送平台官网 | 滁州高低温冲击试验箱厂家_安徽高低温试验箱价格|安徽希尔伯特 | 铸铝门厂家,别墅大门庭院大门,别墅铸铝门铜门[十大品牌厂家]军强门业 | 液氮罐(生物液氮罐)百科-无锡爱思科| 电动百叶窗,开窗器,电动遮阳百叶,电动开窗机生产厂家-徐州鑫友工控科技发展有限公司 | 冷却塔改造厂家_不锈钢冷却塔_玻璃钢冷却塔改造维修-广东特菱节能空调设备有限公司 | 爱佩恒温恒湿测试箱|高低温实验箱|高低温冲击试验箱|冷热冲击试验箱-您身边的模拟环境试验设备技术专家-合作热线:400-6727-800-广东爱佩试验设备有限公司 | 中红外QCL激光器-其他连续-半导体连续激光器-筱晓光子 | 天津散热器_天津暖气片_天津安尼威尔散热器制造有限公司 | EPK超声波测厚仪,德国EPK测厚仪维修-上海树信仪器仪表有限公司 | 东莞注册公司-代办营业执照-东莞公司注册代理记账-极刻财税 | 斗式提升机_链式斗提机_带式斗提机厂家无锡市鸿诚输送机械有限公司 | 砖机托板价格|免烧砖托板|空心砖托板厂家_山东宏升砖机托板厂 | PSI渗透压仪,TPS酸度计,美国CHAI PCR仪,渗透压仪厂家_价格,微生物快速检测仪-华泰和合(北京)商贸有限公司 | 欧洲MV日韩MV国产_人妻无码一区二区三区免费_少妇被 到高潮喷出白浆av_精品少妇自慰到喷水AV网站 | 517瓜水果特产网|一个专注特产好物的网站 | 杭州画室_十大画室_白墙画室_杭州美术培训_国美附中培训_附中考前培训_升学率高的画室_美术中考集训美术高考集训基地 | 潍坊大集网-潍坊信息港-潍坊信息网| 轴流风机-鼓风机-离心风机-散热风扇-罩极电机,生产厂家-首肯电子 | 艺术漆十大品牌_艺术涂料加盟代理_蒙太奇艺术涂料厂家品牌|艺术漆|微水泥|硅藻泥|乳胶漆 | 磁力链接搜索神器_BT磁力狗_CILIMAO磁力猫_高效磁力搜索引擎2024 | 液氮罐_液氮容器_自增压液氮罐-北京君方科仪科技发展有限公司 | 半容积式换热器_北京浮动盘管换热器厂家|北京亿丰上达 | 武汉宣传片制作-视频拍摄-企业宣传片公司-武汉红年影视 | 光栅尺厂家_数显表维修-苏州泽升精密机械 | 电子天平-华志电子天平厂家 | 气动隔膜泵-电动隔膜泵-循环热水泵-液下排污/螺杆/管道/化工泵「厂家」浙江绿邦 | 石栏杆_青石栏杆_汉白玉栏杆_花岗岩栏杆 - 【石雕之乡】点石石雕石材厂 | 煤矿人员精确定位系统_矿用无线通信系统_煤矿广播系统 | 水质传感器_水质监测站_雨量监测站_水文监测站-山东水境传感科技有限公司 | 对夹式止回阀_对夹式蝶形止回阀_对夹式软密封止回阀_超薄型止回阀_不锈钢底阀-温州上炬阀门科技有限公司 | 气弹簧定制-气动杆-可控气弹簧-不锈钢阻尼器-工业气弹簧-可调节气弹簧厂家-常州巨腾气弹簧供应商 | 台湾HIWIN上银直线模组|导轨滑块|TBI滚珠丝杆丝杠-深圳汉工 | 自动钻孔机-全自动数控钻孔机生产厂家-多米(广东)智能装备有限公司 | 南昌旅行社_南昌国际旅行社_南昌国旅在线| 不锈钢反应釜,不锈钢反应釜厂家-价格-威海鑫泰化工机械有限公司 不干胶标签-不干胶贴纸-不干胶标签定制-不干胶标签印刷厂-弗雷曼纸业(苏州)有限公司 | 艾默生变频器,艾默生ct,变频器,ct驱动器,广州艾默生变频器,供水专用变频器,风机变频器,电梯变频器,艾默生变频器代理-广州市盟雄贸易有限公司官方网站-艾默生变频器应用解决方案服务商 | 气动隔膜泵-电动隔膜泵-循环热水泵-液下排污/螺杆/管道/化工泵「厂家」浙江绿邦 | 岛津二手液相色谱仪,岛津10A液相,安捷伦二手液相,安捷伦1100液相-杭州森尼欧科学仪器有限公司 | 汝成内控-行政事业单位内部控制管理服务商 | 复合肥,化肥厂,复合肥批发,化肥代理,复合肥品牌-红四方 |