Wave propagation approach for structural vibration 版權信息
- ISBN:9787566127464
- 條形碼:9787566127464 ; 978-7-5661-2746-4
- 裝幀:暫無
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
Wave propagation approach for structural vibration 內容簡介
本書中文名為《波傳播法解析結構振動》,波傳播法(WPA法)以四階微分方程為基礎,在方程推導和重構解析環(huán)節(jié),始終采用時域空間指數(shù)函數(shù),建立了解析結構振動的統(tǒng)一框架。本書聚焦結構“間斷點”,分析波的傳播、反射、衰減和波形轉換。結合功率流理論,本書力圖從梁、板、周期結構、TMD和激勵源等基礎單元入手,從結構波的微觀視角開展結構動力學研究。WPA法是解析法的一種補充。本書閱讀對象包括希望深入學習結構噪聲、功率流理論和振動噪聲控制等領域的本學生、研究生和工程設計人員。閱讀本書需要具備一定的振動噪聲基礎理論知識和工程實踐經(jīng)驗。
Wave propagation approach for structural vibration 目錄
1 The Basic Theory of Structure-Borne Noise
1.1 The Vibration Modes of Beams
1.1.1 Basic Equations
1.1.2 MATLAB Examples
1.2 The Vibration Modes of Plates
1.2.1 Basic Equations
1.2.2 Calculation Examples for Plates
1.2.3 The Natural Frequencies of Plates
1.3 Sound Pressure, Sound Power, and Sound Radiation Efficiency
1.3.1 Far-Field Sound Pressure
1.3.2 The Wave Number Transform Solution
1.3.3 Volume Velocity and Sound Pressure
1.4 Sound Power and Sound Radiation Efficiency
1.4.1 Basic Equations for the Radiation Mode Theory
1.4.2 Examples of Beam and Plate Structures
1.4.3 Radiation Efficiency in Terms of Radiation Modes
1.4.4 Radiation Efficiency in Terms of Structural Modes
1.4.5 Examples of the Calculation of Radiation Efficiency
References
2 Basic Theory of WPA
2.1 Challenges and Evolution of Analytical Method
2.2 Mathematical Description of WPA
2.2.1 Development History of WPA
2.2.2 Characteristic Function Expressed by Exponential Function
2.2.3 Coefficients of Response Function of Point Harmonic Force
2.2.4 Coefficients of Point Harmonic Bending Moment Response Function
2.2.5 Boundary Conditions
2.2.6 Analytical Reconstruction of Finite Beam
2.3 WPA for Analysis of Finite Simple Structures
2.3.1 WPA Expressions of Displacement, Shear Force, and Bending Moment
2.3.2 S-S Beam
2.3.3 C-C Beam
2.3.4 C-F Beam
2.3.5 Comparison Between WPA and Classical Analytical Method
2.4 Traceability and Characteristic Analysis of WPA
2.4.1 Traceability of WPA
2.4.2 Characteristics of WPA
2.5 Introduction to the Various \"Parameters\" in WPA
2.5.1 WPA and Mechanism Analysis
2.6 Shortcomings of WPA
2.7 Summary
References
3 Analysis of Plate Structure Using WPA Method
3.1 Introduction
3.2 Bending Vibration and Wave of Uniform Plate
3.3 Response of Infinite Plate Under Harmonic Force (Moment)
3.3.1 Response of an Infinite Plate Under Harmonic Force
3.3.2 Response of Infinite Plate Under Harmonic Moment
3.4 Wave Propagation in Infinite Plate at the Vertical Incidence of Bending Wave in Discontinuous Interface
3.4.1 Plate Simply Supported at the Middle
3.4.2 Plate Simply Supported at One End
3.4.3 Plate Firmly Supported at One End
3.4.4 Plate Free at One End
3.5 Wave Propagation When Bending Wave of Infinite Plate Is Incident on Discontinuous Interface
3.6 Forced Vibration of a Rectangular Plate with Both Ends Simply Supported
3.7 Analytical Solution Example for Vibration of a Plate Using WPA
3.8 WPA Method for Solving Structure Power Flow of Plate
3.9 Summary
References
4 WPA for Analyzing Complex Beam Structures
4.1 Research History and Methods of Complex Beam Structures
4.2 WPA Analysis of Elastic Coupled Beams
4.2.1 Establishment of WPA Expression
4.2.2 Boundary Conditions and Consistency Conditions
4.2.3 Vibration Response of Elastic Coupled Beam
4.3 Finite Arbitrary Multi-Supported Elastic Beam
4.3.1 Mechanical Model and WPA Expression
4.3.2 WPA Superposition Under Multi-Harmonic Force Excitation
4.4 Dynamic Response and Stress of Four-Supported Mast
4.4.1 Mechanical Model and WPA Expression
4.4.2 Analysis of Dynamic Stress of Four-Supported Mast
4.5 Periodic and Quasi-Periodic Structures
4.5.1 Properties of Periodic Structure
4.5.2 Properties of Quasi-Periodic Structure
4.6 Energy Transmission Loss Due to Flexible Tubes
4.6.1 Establishment of WPA Expression
4.6.2 Boundary Conditions and Consistency Conditions
4.6.3 Analysis of Dynamic Characteristics of Pipe Sections with Flexible Tubes
4.7 \"Double-Stage Vibration Isolation\" Device for Pipeline
4.7.1 Establishment of WPA Expression
4.7.2 Boundary Conditions and Consistency Conditions
4.8
展開全部
Wave propagation approach for structural vibration 作者簡介
吳崇建,1960年10月生,博導,中國船舶集團減振降噪領域首席技術專家,我國某型常規(guī)潛艇總設計師,中國力學學會特邀理事,曾在英國南安普頓大學ISVR做訪問學者/助理研究員,對減振降噪基礎理論和工程應用有較深入的研究,獲國家科技進步特等獎、一等獎各一次,獲得“船舶設計大師”等榮譽稱號。
書友推薦
- >
名家?guī)阕x魯迅:朝花夕拾
- >
唐代進士錄
- >
【精裝繪本】畫給孩子的中國神話
- >
我與地壇
- >
名家?guī)阕x魯迅:故事新編
- >
苦雨齋序跋文-周作人自編集
- >
李白與唐代文化
- >
莉莉和章魚
本類暢銷