中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
機器學習設計模式(影印版) 版權信息
- ISBN:9787564195540
- 條形碼:9787564195540 ; 978-7-5641-9554-0
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
機器學習設計模式(影印版) 內容簡介
本書中的設計模式捕捉了機器學習中反復出現的問題的很好實踐和解決方案。作者是谷歌的三名工程師,他們整理了已證實的方法,幫助數據科學家解決整個ML過程中的常見問題。這些設計模式將數百位專家的經驗編纂成直接、平易近人的建議。在這本書中,你會找到關于數據和問題表示、操作化、可重復性、可再現性、靈活性、可解釋性和公平性的30種模式的詳細解釋。每個模式包括對問題的描述、各種可能的解決方案,以及針對您的情況選擇很好技術的建議。
機器學習設計模式(影印版) 目錄
Preface
1.The Need for Machine Learning Design Patterns
What Are Design Patterns?
How to Use This Book
Machine Learning Terminology
Models and Frameworks
Data and Feature Engineering
The Machine Learning Process
Data and Model Tooling
Roles
Common Chauenges in Machine Learning
Data Quality
Reproducibility
Data Drift
Scale
Multiple Objectives
Summary
2.Data Representation Design Patterns
Simple Data Representations
Numerical Inputs
Categorical Inputs
Design Pattern 1: Hashed Feature
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 2: Embeddings
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 3: Feature Cross
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 4: Multimodallnput
Problem
Solution
Trade-Offs and Alternatives
Summary
3.Problem Representation Design Patterns
Design Pattern 5: Reframing
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 6: Multilabel
Problem
Solution
Trade-Offs and Alternatives
Design Pattern 7: Ensembles
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 8: Cascade
Problem
Solution
Trade-Offs and Alternatives
Design Pattern 9: Neutral Class
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 10: Re alanang
Problem
……
4.ModeI Training Patterns...
5.Design Patterns for Resilient Serving
6.Reproduability Design Patterns
7.Responsible AI
8.Connected Patterns
Index
1.The Need for Machine Learning Design Patterns
What Are Design Patterns?
How to Use This Book
Machine Learning Terminology
Models and Frameworks
Data and Feature Engineering
The Machine Learning Process
Data and Model Tooling
Roles
Common Chauenges in Machine Learning
Data Quality
Reproducibility
Data Drift
Scale
Multiple Objectives
Summary
2.Data Representation Design Patterns
Simple Data Representations
Numerical Inputs
Categorical Inputs
Design Pattern 1: Hashed Feature
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 2: Embeddings
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 3: Feature Cross
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 4: Multimodallnput
Problem
Solution
Trade-Offs and Alternatives
Summary
3.Problem Representation Design Patterns
Design Pattern 5: Reframing
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 6: Multilabel
Problem
Solution
Trade-Offs and Alternatives
Design Pattern 7: Ensembles
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 8: Cascade
Problem
Solution
Trade-Offs and Alternatives
Design Pattern 9: Neutral Class
Problem
Solution
Why It Works
Trade-Offs and Alternatives
Design Pattern 10: Re alanang
Problem
……
4.ModeI Training Patterns...
5.Design Patterns for Resilient Serving
6.Reproduability Design Patterns
7.Responsible AI
8.Connected Patterns
Index
展開全部
機器學習設計模式(影印版) 作者簡介
Valliappa(Lak)Lakshmanan是谷歌云數據分析和人工智能解決方案的全球負責人。Sara Robinson是谷歌云團隊的開發者和倡導者,專注于機器學習。Michael Munn是谷歌的機器學習解決方案工程師,他幫助客戶設計、實現和部署機器學習模型。
書友推薦
- >
李白與唐代文化
- >
龍榆生:詞曲概論/大家小書
- >
我從未如此眷戀人間
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術叢書(紅燭學術叢書)
- >
名家帶你讀魯迅:故事新編
- >
回憶愛瑪儂
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
【精裝繪本】畫給孩子的中國神話
本類暢銷