中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
經濟數學基礎精要與例解

包郵 經濟數學基礎精要與例解

出版社:科學出版社出版時間:2021-03-01
開本: 24cm 頁數: 482頁
本類榜單:經濟銷量榜
中 圖 價:¥54.7(3.5折) 定價  ¥158.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
溫馨提示:5折以下圖書主要為出版社尾貨,大部分為全新(有塑封/無塑封),個別圖書品相8-9成新、切口
有劃線標記、光盤等附件不全詳細品相說明>>
本類五星書更多>

經濟數學基礎精要與例解 版權信息

  • ISBN:9787030681232
  • 條形碼:9787030681232 ; 978-7-03-068123-2
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

經濟數學基礎精要與例解 內容簡介

本書是一本經濟管理學生學習提高經濟數學基礎知識的參考書.全書共12章, 內容包括微積分、微分與差分方程、線性代數、概率論與數理統計部分.書中的概念、例解有別于其他類型的參考書, 此部分幫助讀者加深理解所學的經濟基礎知識。書中的方法例解所選例題有難有易, 涉及面廣, 個別例題還是對經濟數學基礎的內容補充, 解法靈活多樣, 此部分有助于提高讀者的分析和解決問題的能力, 書中所配的習題是鞏固所學知識之用。

經濟數學基礎精要與例解 目錄

目錄
前言
第1章 極限與連續 1
1.1 概念、性質與定理 1
1.1.1 函數 1
1.1.2 極限 4
1.1.3 連續 7
1.2 概念例解 9
1.3 方法例解 16
1.4 復習題 40
1.5 復習題參考答案與提示 44
第2章 導數與微分 45
2.1 概念、性質與定理 45
2.1.1 導數 45
2.1.2 高階導數 47
2.1.3 微分 48
2.1.4 偏導數與全微分 49
2.2 概念例解 52
2.3 方法例解 56
2.4 復習題 70
2.5 復習題參考答案與提示 73
第3章 導數的應用 75
3.1 概念、性質與定理 75
3.1.1 中值定理 75
3.1.2 導數應用中的幾個重要的關鍵點 76
3.1.3 導數應用定理 76
3.2 概念例解 77
3.3 方法例解 83
3.4 復習題 109
3.5 復習題參考答案與提示 114
第4章 積分 115
4.1 概念、性質與定理 115
4.1.1 不定積分 115
4.1.2 定積分 116
4.1.3 反常積分 118
4.1.4 重積分 121
4.2 概念例解 126
4.3 方法例解 132
4.4 復習題 170
4.5 復習題參考答案與提示 176
第5章 無窮級數 178
5.1 概念、性質與定理 178
5.1.1 常數項級數 178
5.1.2 冪級數 181
5.2 概念例解 184
5.3 方法例解 190
5.4 復習題 215
5.5 復習題參考答案與提示 219
第6章 微分方程與差分方程 221
6.1 概念、性質與定理 221
6.1.1 微分方程 221
6.1.2 差分方程 223
6.2 概念例解 226
6.3 方法例解 227
6.4 復習題 241
6.5 復習題參考答案與提示 243
第7章 矩陣概念及運算 244
7.1 概念、性質與定理 244
7.1.1 矩陣的概念 244
7.1.2 矩陣的運算 245
7.1.3 運算律及性質 247
7.1.4 分塊矩陣及其運算 248
7.1.5 一些特殊的矩陣 250
7.2 概念例解 251
7.3 方法例解 254
7.4 復習題 263
7.5 復習題參考答案與提示 265
第8章 矩陣的數字特征 267
8.1 概念、性質與定理 267
8.1.1 矩陣的行列式 267
8.1.2 矩陣的跡 270
8.1.3 矩陣的秩 270
8.1.4 矩陣的特征值 273
8.1.5 向量(列或行矩陣)的模 274
8.2 概念例解 274
8.3 方法例解 281
8.4 復習題 298
8.5 復習題參考答案與提示 302
第9章 矩陣數字特征的應用 303
9.1 概念、性質與定理 303
9.1.1 矩陣的秩及行列式的應用 303
9.1.2 矩陣特征值的應用 307
9.2 概念例解 309
9.3 方法例解 317
9.4 復習題 339
9.5 復習題參考答案與提示 344
第10章 事件與概率 346
10.1 概念、性質與定理 346
10.1.1 事件 346
10.1.2 概率 347
10.2 概念例解 350
10.3 方法例解 356
10.4 復習題 382
10.5 復習題參考答案與提示 385
第11章 隨機變量及其分布與數字特征 387
11.1 概念、性質與定理 387
11.1.1 單隨機變量及其分布與數字特征 387
11.1.2 隨機向量及其分布與數字特征 389
11.1.3 獨立隨機變量和的分布及有關極限分布 395
11.1.4 常用分布 397
11.2 概念例解 401
11.3 方法例解 410
11.4 復習題 438
11.5 復習題參考答案與提示 442
第12章 抽樣分布與參數推斷 444
12.1 概念、性質與定理 444
12.1.1 抽樣分布 444
12.1.2 參數推斷 446
12.1.3 非參數推斷 455
12.2 概念例解 455
12.3 方法例解 459
12.4 復習題 478
12.5 復習題參考答案與提示 481
參考文獻 483
展開全部

經濟數學基礎精要與例解 節選

第1章 極限與連續 1.1 概念、性質與定理 1.1.1 函數 1.1.1.1 概念 1.設,如果對任意的 x ∈ X,在某個對應規則下有**的 y(y ∈ Y )與之對應,則稱 y是 x的函數,記為 y = f(x). X稱為函數 y = f(x)的定義域,定義域常記為 D(f),而 f為對應規則, x為自變量, y為因變量.對固定的x ∈ D(f),相對應的值 y常稱為函數值,可由 f(x)計算,即 y = f(x).函數值的全體稱為 y = f(x)的值域,常記為 R(f).這類函數稱為單變量單值實函數. 2.設,如果對任意的 x =(x1, ,xn) ∈ X,在某個對應規則下有**的 y(y ∈ Y )與之對應,則稱y是x或 x1, ,xn的函數,記為 y = f(x1, ,xn)或 y= f(x). X稱為函數 y = f(x1, ,xn)的定義域,定義域常記為 D(f),而 f為對應規則, xi為第 i個自變量, y為因變量.對固定的 (x1, ,xn) ∈ D(f),相對應的值 y常稱為函數值,可由 f(x1, ,xn)計算,即 y = f(x1, ,xn).函數值的全體稱為 y = f(x1, ,xn)的值域,常記為 R(f). 這類函數稱為多變量 (n元)單值實函數. 3.設 f(x1, ,xn)((x1, ,xn) ∈ D(f))是一個給定的函數,如果對任意的 (x1, ,xn) ∈ D(f),存在正數 M使得 |f(x1, ,xn)| . M,則稱函數 f(x1, ,xn)是有界的. 依此, f(x1, ,xn)在點 (x10 , ,x0 )附近有界指的是,存在正數 M和 δ,使) II, n0)2 + } 得,當 (x1, ,xn) ∈ (x1) , ,xn) I(x1 . x1 +(xn . xn0 )2   4.設 f(x)(x ∈ D(f))是一個給定的函數,如果對任意的 x ∈ D(f), f(.x)= f(x)成立,則稱 f(x)為偶函數.如果對任意的 x ∈ D(f), f(.x)= .f(x)成立,則稱 f(x)為奇函數. 5.設 f(x)(x ∈ D(f))是一個給定的函數 ,如果存在數 T ,使得對任意的 x ∈ D(f), f(x + T )= f(x)成立 ,則稱 f(x)為周期函數 , T為周期 ,*小的正數 T稱為 f(x)的*小正周期. 6.設 f(x)(x ∈ D(f))是一個給定的函數 ,如果對任意的 x1,x2 ∈ D(f),且 x1 f(x2))成立 ,則稱 f(x)為單調遞增 (減)函數 ;如果對任意的 x1,x2 ∈ D(f),且 x1   7.設 f(x)(x ∈ D(f))是一個給定的函數 ,如果對任意的 x1,x2 ∈ D(f)和對任意的數 α ∈ [0, 1],下列不等式成立 ,且等號僅當 x1 = x2,或 α=0,或 α =1時成立, f(αx1 + (1-α)x2) ≤ αf(x1) + (1-α)f(x2) (f(αx1 + (1-α)x2) ≥ αf(x1) + (1-α)f(x2)), 則稱 f(x)為上 (下)凹函數. 特別地,如果函數 f(x)(x ∈ D(f))是一元函數時,即對任意的 x1,x2 ∈ D(f), α ∈ [0, 1],下列不等式成立且等號僅當 x1 = x2,或 α =0,或 α =1時成立, f(αx1 + (1-α)x2) ≤ αf(x1) + (1-α)f(x2) (f(αx1 + (1-α)x2) ≥ αf(x1) + (1-α)f(x2)), 則稱 f(x)為上 (下)凹函數 .如果 f(x)在區間 I上是上 (下)凹函數 ,則區間 I稱為 f(x)的上 (下)凹區間. 8.動點 (x1, ,xn,f(x1, ,xn))((x1, ,xn) ∈ D(f))的軌跡稱為函數 y = f(x1, ,xn)的圖像. 1.1.1.2函數的運算 1.四則運算 給出函數 f(x),x ∈ D(f), g(x),x ∈ D(g),那么 f(x)與 g(x)的 和: f(x) ± g(x), x ∈ D(f) ∩ D(g); 積: f(x)g(x), x ∈ D(f) ∩ D(g); 商: fg((xx)) , x ∈ D(f) ∩ D(g) .{x|g(x)=0}. 2.復合運算 給出函數 f(x),x∈D(f), g(x),x ∈ D(g),那么 f(x)與 g(x)的復合運算 (函數)為 f(g(x)), x ∈ D(g) ∩{x|g(x) ∈ D(f)}. 3.逆運算. 設 y = f(x)的定義域為 D(f),值域為 R(f),如果對任意一個 y ∈ R(f),在 y = f(x)下有**的 x(x ∈ D(f))與之對應 ,則 x是 y的函數 ,并稱之為 y = f(x)的反函數.反函數通常記為 y = f.1(x),其中, y ∈ D(f),x ∈ R(f). 1.1.1.3性質 1.函數變量的虛變量特性. 函數相同 (等)當且僅當函數關系和定義域相同 ,與用什么字母無關 ,即變量是虛擬的 .例如 , y = f(x),s = f(t),u = f(x),y = f(v), (x, t, v ∈ D(f))是同一函數 ,或說是相同 (等)的; y = f(x, t)與 y = f(u, v), (x, t), (u, v) ∈ D(f)是同一函數 ; z = f(x, y, t), z = f(u, v, w), y = f(x, u, t), (x, y, t), (u, v, w), (x, u, t) ∈ D(f)是同一函數. 2. f(x)有界的充分必要條件為存在數 A, B使得對任意的 x ∈ D(f),A ≤ f(x) ≤ B成立. 3.如果f(x)為奇函數,則曲線 y = f(x)關于原點對稱;如果 f(x)為偶函數,則曲線 y = f(x)關于 y軸對稱 .如果函數有反函數 y = f(x),則曲線 y = f(x)與 y = f.1(x)關于直線 y = x對稱. 如果 fi(x)為奇 (偶)函數 , i =1, ,n,則 f1(x)+ + fn(x)為奇 (偶)函數.當 n為偶數時, f1(x) fn(x)為偶函數;但當 n為奇數時, f1(x)? fn(x)為奇函數. 如果 f(x)為奇函數, g(x)為偶函數,則 f(x)g(x)為奇函數.設 f(x)為任意一個函數,則 F (x)= f(x) . f(.x)為奇函數, G(x)= f(x)+ 1 f(.x)為偶函數,且 f(x)= [F (x)+ G(x)]. 如果 f(x),g(x)均為奇 (2偶)函數 ,且可復合 ,則 f(g(x))也是奇函數 ;如果 f(x)為奇函數, g(x)為偶函數,且可復合,則 f(g(x))和 g(f(x))均為偶函數. 如果 f(x)為奇 (偶)函數,其反函數為 f.1(x)也是奇 (偶)函數. 4.一元函數的圖像是平面上的一條曲線 ,反之不然 ;多元函數的圖像是空間中的一張曲面,反之不然. 1.1.1.4一些常用的函數 1.初等函數:冪函數、三角函數、對數函數、反三角函數和指數函數. 2.兩個非初等函數 分段函數: I為區間,端點稱為 f(x)的分段點; 變上限函數: F (x)=f(t)dx; 和函數: S(x)= anx n . 3.正整數集上的函數:數列: 級數部分和: 1.2極限 1.1.2.1概念 1. f(x)在 x0處的極限定義. lim f(x)= L的定義設 f(x)在 x0點附近有定義.如果 x無限接近 x0 x→x0 時, f(x)接近一個定數 L,那么,數 L是 x → x0時 f(x)在 x0點處的極限,記為 lim f(x)= L. 如果 x無限接近 x0時, f(x)不接近一個定數 L,那么,當 x → x0時 f(x)在 x0點處的極限不存在,或者說, lim f(x)不存在. x→x0 “x無限接近 x0時, f(x)接近一個定數 L”一個等價的定量定義是:對任意 ε> 0,存在 δ> 0,使得當 0 0,對任意 δ> 0,使得當 0 0,存在 δ> 0,使得當 0   lim + f(x)= L (左極限)的定義如果對任意 ε> 0,存在 δ> 0,使得當.δ  2. f(x)在 ∞處的極限定義. lim f(x)= L的定義如果對任意 ε> 0,存在 X> 0,使得當 |x| >X時, |f(x) . L|   lim f(x)= L (左極限 )的定義如果對任意 ε> 0,存在 X> 0,使得當 x>X時, |f(x) . L|   lim f(x)= L (右極限 )的定義如果對任意 ε> 0,存在 X> 0,使得當 x 0,存在整數 N> 0,使得當 x>N時, |an - L|   4.多元函數的極限定義. 類似于一元函數,給出多元函數的極限定義,這里僅以二元函數為例. lim f(x, y)= L的定義如果對任意 ε> 0,存在 δ> 0,使得當 0 < |x-x0| < δ, 0 < |y-y0|   lim f(x,

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 中药二氧化硫测定仪,食品二氧化硫测定仪|俊腾百科 | 礼仪庆典公司,礼仪策划公司,庆典公司,演出公司,演艺公司,年会酒会,生日寿宴,动工仪式,开工仪式,奠基典礼,商务会议,竣工落成,乔迁揭牌,签约启动-东莞市开门红文化传媒有限公司 | 山东led显示屏,山东led全彩显示屏,山东LED小间距屏,临沂全彩电子屏-山东亚泰视讯传媒有限公司 | 商秀—企业短视频代运营_抖音企业号托管 | 塑料异型材_PVC异型材_封边条生产厂家_PC灯罩_防撞扶手_医院扶手价格_东莞市怡美塑胶制品有限公司 | 全自动翻转振荡器-浸出式水平振荡器厂家-土壤干燥箱价格-常州普天仪器 | 飞象网 - 通信人每天必上的网站| 电脑知识|软件|系统|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网 | 宁波普瑞思邻苯二甲酸盐检测仪,ROHS2.0检测设备,ROHS2.0测试仪厂家 | 焊锡丝|焊锡条|无铅锡条|无铅锡丝|无铅焊锡线|低温锡膏-深圳市川崎锡业科技有限公司 | 棕刚玉-白刚玉厂家价格_巩义市东翔净水材料厂 | 双吸泵,双吸泵厂家,OS双吸泵-山东博二泵业有限公司 | 单锥双螺旋混合机_双螺旋锥形混合机-无锡新洋设备科技有限公司 | 布袋式除尘器|木工除尘器|螺旋输送机|斗式提升机|刮板输送机|除尘器配件-泊头市德佳环保设备 | 陕西安闸机-伸缩门-车牌识别-广告道闸——捷申达门业科技 | 多物理场仿真软件_电磁仿真软件_EDA多物理场仿真软件 - 裕兴木兰 | 专业生产动态配料系统_饲料配料系统_化肥配料系统等配料系统-郑州鑫晟重工机械有限公司 | 儿童乐园|游乐场|淘气堡招商加盟|室内儿童游乐园配套设备|生产厂家|开心哈乐儿童乐园 | 脉冲布袋除尘器_除尘布袋-泊头市净化除尘设备生产厂家 | 深圳公司注册-工商注册公司-千百顺代理记账公司 | 仿古瓦,仿古金属瓦,铝瓦,铜瓦,铝合金瓦-西安东申景观艺术工程有限公司 | 鑫铭东办公家具一站式定制采购-深圳办公家具厂家直销 | 施工围挡-施工PVC围挡-工程围挡-深圳市旭东钢构技术开发有限公司 | 亿立分板机_曲线_锯片式_走刀_在线式全自动_铣刀_在线V槽分板机-杭州亿协智能装备有限公司 | 电子天平-华志电子天平厂家| 三佳互联一站式网站建设服务|网站开发|网站设计|网站搭建服务商 赛默飞Thermo veritiproPCR仪|ProFlex3 x 32PCR系统|Countess3细胞计数仪|371|3111二氧化碳培养箱|Mirco17R|Mirco21R离心机|仟诺生物 | 杭州画室_十大画室_白墙画室_杭州美术培训_国美附中培训_附中考前培训_升学率高的画室_美术中考集训美术高考集训基地 | 杭州代理记账多少钱-注册公司代办-公司注销流程及费用-杭州福道财务管理咨询有限公司 | 车件|铜件|车削件|车床加工|五金冲压件-PIN针,精密车件定制专业厂商【东莞品晔】 | 液压升降平台_剪叉式液压/导轨式升降机_传菜机定做「宁波日腾升降机厂家」 | 岩棉切条机厂家_玻璃棉裁条机_水泥基保温板设备-廊坊鹏恒机械 | 奇酷教育-Python培训|UI培训|WEB大前端培训|Unity3D培训|HTML5培训|人工智能培训|JAVA开发的教育品牌 | 培训无忧网-教育培训咨询招生第三方平台 | 离子色谱自动进样器-青岛艾力析实验科技有限公司 | 老房子翻新装修,旧房墙面翻新,房屋防水补漏,厨房卫生间改造,室内装潢装修公司 - 一修房屋快修官网 | 浇钢砖,流钢砖_厂家价低-淄博恒森耐火材料有限公司 | 长春网站建设,五合一网站设计制作,免费优化推广-长春网站建设 | 上海质量认证办理中心| IIS7站长之家-站长工具-爱网站请使用IIS7站长综合查询工具,中国站长【WWW.IIS7.COM】 | 山东风淋室_201/304不锈钢风淋室净化设备厂家-盛之源风淋室厂家 翻斗式矿车|固定式矿车|曲轨侧卸式矿车|梭式矿车|矿车配件-山东卓力矿车生产厂家 | 北京晚会活动策划|北京节目录制后期剪辑|北京演播厅出租租赁-北京龙视星光文化传媒有限公司 |