掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
數學物理的幾何方法(影印版) 版權信息
- ISBN:9787510004513
- 條形碼:9787510004513 ; 978-7-5100-0451-3
- 裝幀:70g膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
數學物理的幾何方法(影印版) 內容簡介
現代微分幾何在理論物理中扮演著重要的角色,并且在相對論、宇宙學、高能量物理和場論、熱動力學、流體力學以及力學中的應用也日益突顯。
本書作為一本微分幾何教程,介紹了李導數、李群以及微分形式的引入方法,及其在理論物理中的廣泛應用。
有物理和應用數學背景的讀者學完本書,就可以更深入學習一些科研文獻以及更高層次的純數學理論。
數學物理的幾何方法(影印版) 目錄
1 Some basic mathematics
1.1 The space Rn and its topology
1.2 Mappings
1.3 Real analysis
1.4 Group theory
1.5 Linear algebra
1.6 The algebra of square matrices
1.7 Bibliography
2 Dffferentiable manifolds and tensors
2.1 Defmition of a manifold
2.2 The sphere as a manifold
2.3 Other examples of manifolds
2.4 Global considerations
2.5 Curves
2.6 Functions on M
2.7 Vectors and vector fields
2.8 Basis vectors and basis vector fields
2.9 Fiber bundles
2.10 Examples of fiber bundles
2.11 A deeper look at fiber bundles
2.12 Vector fields and integral curves
2.13 Exponentiation of the operator d/dZ
2.14 Lie brackets and noncoordinate bases
2.15 When is a basis a coordinate basis?
2.16 One-forms
2.17 Examples of one-forms
2.18 The Dirac delta function
2.19 The gradient and the pictorial representation of a one-form
2.20 Basis one-forms and components of one-forms
2.21 Index notation
2.22 Tensors and tensor fields
2.23 Examples of tensors
2.24 Components of tensors and the outer product
2.25 Contraction
2.26 Basis transformations
2.27 Tensor operations on components
2.28 Functions and scalars
2.29 The metric tensor on a vector space
2.30 The metric tensor field on a manifold
2.31 Spe relativity
2.32 Bibliography
3 Lie derivatives and Lie groups
3.1 Introduction: how a vector field maps a manifold into itself
3.2 Lie dragging a function
3.3 Lie dragging a vector field
3.4 Lie derivatives
3.5 Lie derivative of a one-form
3.6 Submanifolds
3.7 Frobenius theorem (vector field version)
3.8 Proof of Frobenius theorem
3.9 An example: the generators ors2
3.10 Invariance
3.11 Killing vector fields
3.12 Killing vectors and conserved quantities in particle dynamics
3.13 Axial symmetry
3.14 Abstract Lie groups
3.15 Examples of Lie groups
3.16 Lie algebras and their groups
3.17 Realizations and representatidns
3.18 Spherical symmetry, spherical harmonics and representations of the rotation group
3.19 Bibliography
4 Differential forms A The algebra and integral calculus of forms
4.1 Definition of volume - the geometrical role of differential forms
4.2 Notation and definitions for antisymmetric tensors
4.3 Differential forms
4.4 Manipulating differential forms
4.5 Restriction of forms
4.6 Fields of forms
4.7 Handedness and orientability
4.8 Volumes and integration on oriented manifolds
4.9 N-vectors, duals, and the symbol
4.10 Tensor densities
4.11 Generalized Kronecker deltas
4.12 Determinants and
4.13 Metric volume elements B The differential calculus of forms and its applications
4.14 The exterior derivative
4.15 Notation for derivatives
4.16 Familiar examples of exterior differentiation
4.17 Integrability conditions for partial differential equations
4.18 Exact forms
4.19 Proof of the local exactness of closed forms
4.20 Lie derivatives of forms
4.21 Lie derivatives and exterior derivatives commute
4.22 Stokes theorem
4.23 Gauss theorem and the definition of divergence
4.24 A glance at cohomology theory
4.25 Differential forms and differential equations
4.26 Frobenins theorem (differential forms version)
4.27 Proof of the equivalence of the two versions of Frobenius theorem
4.28 Conservation laws
4.29 Vector spherical harmonics
4.30 Bibliography
5 Applications in physics A Thermodynamics
5.1 Simple systems
5.2 Maxwell and other mathematical identities
5.3 Composite thermodynamic systems: Caratheodorys theorem B Hamilton/an mechanics
5.4 Hamiltodian vector fields
5.5 Canonical transformations
5.6 Map between vectors and one-forms provided by
5.7 Poisson bracket
5.8 Many-particle systems: symplectic forms
5.9 Linear dynamical systems: the symplectic inner product and conserved quantities
5.10 Fiber bundle structure of the Hamiltonian equations C Electromagnetism
5.11Rewriting Maxwells equations using differential forms
5.12 Charge and topology
5.13 The vector potential
5.14 Plane waves: a simple example D Dynamics of a perfect fluid
5.15 Role of Lie derivatives
5.16 The comoving time-derivative
5.17 Equation of motion
5.18 Conservation of vorticity
E Cosmology
5.19 The cosmological principle
5.20 Lie algebra of maximal symmetry
5.21 The metric of a spherically symmetric three-space
5.22 Construction of the six Killing vectors
5.23 Open, closed, and flat universes
5.24 Bibliography
6 Connections for Riemnnnian manifolds and gauge theories
6.1 Introduction
6.2 Parallelism on curved surfaces
6.3 The covariant derivative
6.4 Components: covariant derivatives of the basis
6.5 Torsion
6.6 Geodesics
6.7 Normal coordinates
6.8 Riemann tensor
6.9 Geometric interpretation of the Riemann tensor
6.10 Flat spaces
6.11 Compatibility of the connection with volume-measure or the metric
6.12 Metric connections
6.13 The affine connection and the equivalence principle
6.14 Connections and gauge theories: the example of electromagnetism
6.15 Bibfiography
Appendix: solutions and hints for selected exercises
Notation
Index
展開全部
數學物理的幾何方法(影印版) 作者簡介
Bernard Schutz,就職于馬克斯·普朗克引力物理研究所(Max Planck Institute for Gravitational Physics)和卡迪夫大學(Cardiff University),廣義相對論領域的專家和學者。他的另一部著作A First Course in General Relativity 2nd ed.(《廣義相對論基礎教程 第2版》978-7-5100-3293-6)2011年也已由世圖影印出版。
書友推薦
- >
月亮與六便士
- >
有舍有得是人生
- >
史學評論
- >
唐代進士錄
- >
朝聞道
- >
李白與唐代文化
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
中國人在烏蘇里邊疆區:歷史與人類學概述
本類暢銷