-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
機器學習的數學原理和算法實踐 版權信息
- ISBN:9787115556967
- 條形碼:9787115556967 ; 978-7-115-55696-7
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
機器學習的數學原理和算法實踐 本書特色
1.形象直白闡述機器學習算法原理 2.細致講解關鍵數學原理 3.代碼分段解讀,幫助讀者上手實操 4.編程實踐案例經典實用
機器學習的數學原理和算法實踐 內容簡介
零基礎讀者應如何快速入門機器學習?數學基礎薄弱的讀者應如何理解機器學習中的數學原理?這些正是本書要解決的問題。本書從數學基礎知識入手,通過前3章的介紹,幫助讀者輕松復習機器學習涉及的數學知識;然后,通過第4-3章的介紹,逐步講解機器學習常見算法的相關知識,幫助讀者快速入門機器學習;很后,通過4章的綜合實踐,幫助讀者回顧本書內容,進一步鞏固所學知識。 《機器學習的數學原理和算法實踐》適合對機器學習感興趣但數學基礎比較薄弱的讀者學習,也適合作為相關專業的學生入門機器學習的參考用書。
機器學習的數學原理和算法實踐 目錄
1.1 深入理解導數的本質 2
1.1.1 哲學層面理解變化 2
1.1.2 生活中處處有函數 3
1.1.3 從瞬時速度到導數 3
1.1.4 從近似運動來理解導數 4
1.1.5 直觀理解復合函數求導 6
1.2 理解多元函數偏導 7
1.2.1 多元函數偏導數是什么 7
1.2.2 搞清楚梯度是什么 7
1.3 理解微積分 8
1.3.1 直觀理解積分 8
1.3.2 直觀理解微積分基本定理 10
1.4 泰勒公式太重要了 11
1.4.1 泰勒公式是什么 11
1.4.2 泰勒公式的典型應用 11
1.4.3 直觀理解泰勒公式的來龍去脈 12
1.4.4 微積分基本定理與泰勒公式的關系 14
第 2章 補基礎:不怕學不懂線性代數 15
2.1 直觀理解向量 16
2.1.1 理解向量加法與數乘 17
2.1.2 理解向量乘法的本質 19
2.1.3 理解基向量與線性無關 21
2.2 直觀理解矩陣 22
2.2.1 理解矩陣運算規則 22
2.2.2 理解矩陣向量乘法的本質 24
2.2.3 深刻理解矩陣乘法的本質 29
2.3 理解線性方程組求解的本質 30
2.3.1 直觀理解方程組的解 31
2.3.2 如何尋找解的表達式 34
2.3.3 深刻理解逆矩陣的本質 36
2.3.4 直觀理解行列式的本質 40
2.4 徹底理解*小二乘法的本質 42
2.4.1 如何求解無解的方程組 43
2.4.2 論證 n 維子空間上的情況 48
2.4.3 搞懂施密特正交化是什么 50
2.4.4 理解*小二乘法的本質 53
2.5 直觀理解相似矩陣對角化 54
2.5.1 相似矩陣是什么 55
2.5.2 如何理解特征值與特征向量 59
2.5.3 直觀理解相似矩陣的對角化 62
第3章 補基礎:不怕學不懂概率統計 64
3.1 什么是概率 64
3.1.1 *簡單的概率的例子 64
3.1.2 概率論與數理統計的關系 65
3.2 搞懂大數定律與中心極限定理 65
3.2.1 大數定律想表達什么 65
3.2.2 中心極限定理想表達什么 67
3.2.3 大數定律與中心極限定理的區別 70
3.3 理解概率統計中的重要分布 70
3.3.1 真正搞懂正態分布 70
3.3.2 真正搞懂泊松分布 74
3.4 理解樸素貝葉斯思想很重要 75
3.4.1 如何理解條件概率 75
3.4.2 如何理解貝葉斯公式 76
3.4.3 貝葉斯公式的應用 76
3.4.4 *大似然估計 77
第4章 全景圖:機器學習路線圖 79
4.1 通俗講解機器學習是什么 79
4.1.1 究竟什么是機器學習 79
4.1.2 機器學習的分類 81
4.2 機器學習所需環境介紹 82
4.2.1 Python的優勢 83
4.2.2 Python下載、安裝及使用 83
4.3 跟著例子熟悉機器學習全過程 84
4.4 準備數據包括什么 87
4.4.1 數據采集 87
4.4.2 數據清洗 88
4.4.3 不均衡樣本處理 88
4.4.4 數據類型轉換 89
4.4.5 數據標準化 90
4.4.6 特征工程 90
4.5 如何選擇算法 92
4.5.1 單一算法模型 92
4.5.2 集成學習模型 92
4.5.3 算法選擇路徑 96
4.6 調參優化怎么處理 97
4.6.1 關于調參的幾個常識 97
4.6.2 模型欠擬合與過擬合 98
4.6.3 常見算法調參的內容 98
4.6.4 算法調參的實踐方法 99
4.7 如何進行性能評估 100
4.7.1 回歸預測性能度量 100
4.7.2 分類任務性能度量 100
第5章 數據降維:深入理解PCA的來龍去脈 102
5.1 PCA是什么 103
5.2 用一個例子來理解PCA過程 103
5.3 如何尋找降維矩陣P 106
5.4 PCA降維的核心思想 107
5.4.1 核心思想一:基變換向量投影 108
5.4.2 核心思想二:協方差歸零投影 112
5.4.3 核心思想三:*大方差投影 114
5.4.4 PCA降維的關鍵:協方差矩陣對角化 116
5.5 面向零基礎讀者詳解PCA降維 116
5.5.1 計算矩陣 Y 的協方差矩陣 Cy 116
5.5.2 矩陣 Y 的協方差矩陣 Cy 對角化 118
5.5.3 求解降維矩陣 P 120
5.6 編程實踐:手把手教你寫代碼 122
5.6.1 背景任務介紹:鳶尾花數據降維 122
5.6.2 代碼展示:手把手教你寫 123
5.6.3 代碼詳解:一步一步講解清楚 123
第6章 凸優化核心過程:真正搞懂梯度下降過程 126
6.1 通俗講解凸函數 126
6.1.1 什么是凸集 126
6.1.2 什么是凸函數 127
6.1.3 機器學習“熱愛”凸函數 128
6.2 通俗講解梯度下降 128
6.2.1 梯度是什么 130
6.2.2 梯度下降與參數求解 130
6.2.3 梯度下降具體過程演示 131
6.3 編程實踐:手把手教你寫代碼 132
6.3.1 一元函數的梯度下降 132
6.3.2 多元函數的梯度下降 137
第7章 搞懂算法:線性回歸是怎么回事 142
7.1 什么是線性回歸 142
7.2 線性回歸算法解決什么問題 143
7.3 線性回歸算法實現過程 143
7.4 編程實踐:手把手教你寫代碼 146
7.4.1 背景任務介紹:預測房價情況 146
7.4.2 代碼展示:手把手教你寫 147
7.4.3 代碼詳解:一步一步講解清楚 147
第8章 搞懂算法:邏輯回歸是怎么回事 150
8.1 如何理解邏輯回歸 150
8.2 邏輯回歸算法實現過程 151
8.3 編程實踐:手把手教你寫代碼 155
8.3.1 背景任務介紹:用邏輯回歸分類預測腫瘤 155
8.3.2 代碼展示:手把手教你寫 155
8.3.3 代碼詳解:一步一步講解清楚 156
第9章 搞懂算法:決策樹是怎么回事 159
9.1 典型的決策樹是什么樣的 159
9.2 決策樹算法的關鍵是什么 160
9.3 信息、信息量與信息熵 161
9.4 信息增益的計算過程 163
9.5 剪枝處理是怎么回事 167
9.6 編程實踐:手把手教你寫代碼 167
9.6.1 背景任務介紹:用決策樹分類預測乳腺癌 167
9.6.2 代碼展示:手把手教你寫 167
9.6.3 代碼詳解:一步一步講解清楚 168
第 10章 搞懂算法:支持向量機是怎么回事 171
10.1 SVM有什么用 171
10.2 SVM算法原理和過程是什么 172
10.2.1 分離超平面是什么 172
10.2.2 間隔與支持向量是什么 175
10.3 編程實踐:手把手教你寫代碼 180
10.3.1 背景任務介紹:用SVM分類預測乳腺癌 180
10.3.2 代碼展示:手把手教你寫 180
10.3.3 代碼詳解:一步一步講解清楚 181
第 11章 搞懂算法:聚類是怎么回事 184
11.1 聚類算法介紹 184
11.1.1 聚類是什么 184
11.1.2 聚類算法應用場景 185
11.2 通俗講解聚類算法過程 186
11.2.1 相似度如何度量 186
11.2.2 聚類性能如何度量 188
11.2.3 具體算法介紹:K-means算法 188
11.2.4 具體算法介紹:K-means++算法 189
11.3 編程實踐:手把手教你寫代碼 191
11.3.1 背景任務介紹:手寫數字圖像聚類 191
11.3.2 代碼展示:手把手教你寫 191
11.3.3 代碼詳解:一步一步講解清楚 193
第 12章 搞懂算法:樸素貝葉斯是怎么回事 195
12.1 樸素貝葉斯是什么 195
12.1.1 條件概率是什么 195
12.1.2 貝葉斯公式是什么 195
12.2 樸素貝葉斯實現方法 196
12.2.1 伯努利樸素貝葉斯方法 196
12.2.2 高斯樸素貝葉斯方法 198
12.2.3 多項式樸素貝葉斯方法 199
12.3 編程實踐:手把手教你寫代碼 200
12.3.1 背景任務介紹:樸素貝葉斯分類預測文本類別 200
12.3.2 代碼展示:手把手教你寫 201
12.3.3 代碼詳解:一步一步講解清楚 201
第 13章 搞懂算法:神經網絡是怎么回事 205
13.1 從一個具體任務開始:識別數字 206
13.2 理解神經元是什么 207
13.2.1 感知器是什么 207
13.2.2 S型神經元是什么 208
13.3 理解典型神經網絡多層感知器 210
13.3.1 神經網絡結構是什么 210
13.3.2 搞懂MLP的工作原理是什么 211
13.4 MLP的代價函數與梯度下降 216
13.4.1 代價函數:參數優化的依據 216
13.4.2 梯度下降法:求解代價函數*小值 217
13.5 反向傳播算法的本質與推導過程 219
13.5.1 反向傳播算法:神經網絡的訓練算法 219
13.5.2 尋根究底:搞懂反向傳播算法的數學原理 221
13.6 編程實踐:手把手教你寫代碼 224
13.6.1 通過代碼深入理解反向傳播算法 224
13.6.2 一個簡單的神經網絡分類算法實踐 227
第 14章 綜合實踐:模型優化的經驗技巧 230
14.1 經驗技巧一:特征處理 230
14.1.1 特征提取:文本數據預處理 230
14.1.2 特征選擇:篩選特征組合 234
14.2 經驗技巧二:模型配置優化 235
14.2.1 模型配置優化方法:交叉驗證 235
14.2.2 模型配置優化方法:超參數搜索 237
14.3 編程實踐:手把手教你寫代碼 239
14.3.1 背景任務介紹:乳腺癌分類預測多模型對比演示 240
14.3.2 算法介紹:本案例算法簡介 240
14.3.3 代碼展示:手把手教你寫 241
14.3.4 代碼詳解:一步一步講解清楚 244
14.4 經驗總結:機器學習經驗之談 252
14.4.1 機器學習中的誤區 252
14.4.2 如何學好機器學習 253
機器學習的數學原理和算法實踐 作者簡介
大威,本名張威,西安交通大學工科試驗班(工管貫通班)碩士畢業,信息系統項目管理師(高級資質)、高級經濟師、中國計算機學會會員、中國通信學會會員。擁有多年數據建模、數據挖掘與商業咨詢經驗,現就職于某行業領先的大數據公司,負責大數據產品及人工智能產品的規劃設計管理工作。
- >
唐代進士錄
- >
羅庸西南聯大授課錄
- >
推拿
- >
月亮與六便士
- >
自卑與超越
- >
姑媽的寶刀
- >
回憶愛瑪儂
- >
伊索寓言-世界文學名著典藏-全譯本