代數拓撲基礎教程A basic course in algebraic topology 版權信息
- ISBN:9787510004803
- 條形碼:9787510004803 ; 978-7-5100-0480-3
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
代數拓撲基礎教程A basic course in algebraic topology 內容簡介
本書的主要內容包括:緊2-流形的分類、基本群、覆疊空間、奇異同調論以及奇異上同調理論。這些主題得到系統地展開,并且摒棄了所有不必要的定義、術語及技術工具。作者力求突出各種概念的幾何背景。本書納入了作者以前的著作:《代數拓撲學引論》(GTM 56)中的前五章內容,以及現已絕版的《奇異同調論》(GTM 70)著作中的幾乎全部內容,這些內容材料現都已經過了細致地修改、校正與翻新。目次:2維流形;基本群; 自由群及群的自由積 兩空間并集的基本群上的Seifert及Van Kampen定理及其應用;覆疊空間; 同調理論的背景及動機;同調理論的定義及基本性質;一些空間的同調群的計算: 同調理論的應用及更多性質;CW復形的同調;任意系數群的同調; 積空間的同調;上同調理論;同調及上同調的積;流形上的同調對偶定理;射影空間的上積及其應用。
代數拓撲基礎教程A basic course in algebraic topology 目錄
Preface Notation and Terminology
CHAPTER I Two-Dimensional Manifolds
§1.Introduction
§2.Definition and Examples of n-Manifolds
§3.Orientable vs.Nonorientablc Manifolds
§4.Examples of Compact, Connected 2-Manifolds
§5.Statement of the Classification Theorem for Compact Surfaces
§6.Triangulations ofCompact Surfaces
§7.Proof of Theorem 5.1
§8.The Euler Characteristic of a Surface
References
CHAPTER II The Fundamental Group
§1.Introduction
§2.Basic Notation and Terminology
§3.Definition of the Fundamental Group of a Space
§4.The Effect of a Continuous Mapping on the Fundamental Group
§5.The Fundamental Group of a Circle Is Infinite Cyclic
§6.Application: The Brouwer Fixed-Point Theorem in Dimension 2
§7.The Fundamental Group of a Product Space
§8.Homotopy Type and Homotopy Equivalence of Spaces
References
CHAPTER III Free Groups and Free Products of Groups
§1.Introduction
§2.The Weak Product of Abelian Groups
§3.Free Abelian Groups
§4.Free Products ofGroups
§5.Free Groups
§6.The Presentation of Groups by Generators and Relations
§7.Universal Mapping Problems
References
CHAPTER IV Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces Applications
§1.Introduction
§2.Statement and Proof of the Theorem of Seifert and Van Kampen
§3.First Application of Theorem 2.1
§4.Second Application of Theorem 2.1
§5.Structure of the Fundamental Group of a Compact Surface
§6.Application to Knot Theory
§7.Proof of Lemma 2.4
References
……
CHAPTER V Covering Spaces
CHAPTER VI Background and Motivation for Homology Theory
CHAPTER VII Definitions and Basic Properties of Homology Theory
CHAPTER VIII Determination of the Homology Groups of Certain Spaces: Applications and Further Properties of Homology Theory
CHAPTER IX Homology of CW-Complexes
CHAPTER X Homology with Arbitrary Coefficient Groups
CHAPTER XI The Homology of Product Spaces
CHAPTER XII Cohomology Theory
CHAPTER XIII Products in Homology and Cohomology
CHAPTER XIV Duality Theorems for the Homology of Manifolds
CHAPTER XV Cup Products in Project we Spaces and Applications of Cup Products
APPENDIX
Index
展開全部
代數拓撲基礎教程A basic course in algebraic topology 作者簡介
William Massey, 1920年出生于美國的伊利諾伊州,1949年獲得普林斯頓大學博士學位,并在該校擔任兩年的博士后研究助教后,在Brown大學任教10年。1961年起一直擔任Yale大學數學系教授,并于退休后被該校授予名譽教授。Massey在代數拓撲方面的工作聞名于世,“Massey積”就是以他的名字命名。他的著書很多,其中《代數拓撲學》,以及本書都是其中重要的著作。
書友推薦
- >
月亮與六便士
- >
二體千字文
- >
姑媽的寶刀
- >
羅曼·羅蘭讀書隨筆-精裝
- >
唐代進士錄
- >
詩經-先民的歌唱
- >
史學評論
- >
名家帶你讀魯迅:故事新編
本類暢銷
-
代數學引論-(第二卷)(第3版)
¥36.3¥44.1