掃一掃
關注中圖網
官方微博
基本拓撲學Basic topology 版權信息
- ISBN:9787506283458
- 條形碼:9787506283458 ; 978-7-5062-8345-8
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
基本拓撲學Basic topology 內容簡介
本書特色一是注重培養學生的幾何直觀能力;二是對于單純同調的處理重點比較突出,使主要線索不至于被復雜的細節所掩蓋;三是注重抽象理論與具體應用的保持平衡。
基本拓撲學Basic topology 目錄
Preface
Chapter 1 Introduction
1.Euler's theorem
2.Topological equivalence
3.Surfaces
4.Abstract spaces
5.A classification theorem
6.Topological invariants
Chapter 2 Continuity
1.Open and closed sets
2.Continuous functions
3.A space-filling curve
4.The Tietze extension theorem
Chapter 3 Compactness and connectedness
1.Closed bounded subsets of En
2.The Heine-Borel theorem
3.Properties of compact spaces
4.Product spaces
5.Connectedness
6.Joining points by paths
Chapter 4 Identification spaces
1.Constructing a Mobius strip
2.The identification topology
3.Topological groups
4.Orbit spaces
Chapter 5 The fundamental group
1.Homotopic maps
2.Construction of the fundamental group
3.Calculations
4.Homotopy type
5.The Brouwer fixed-point theorem
6.Separation of the plane
7.The boundary of a surface
Chapter 6 Triangulations
1.Triangulating spaces
2.Barycentric subdivision
3.Simplicial approximation
4.The edge group of a complex
5.Triangulating orbit spaces
6.Infinite complexes
Chapter 7 Surfaces
1.Classification
2.Triangulation and orientation
3.Euler characteristics
4.Surgery
5.Surface symbols
Chapter 8 Simplicial homology
1.Cycles and boundaries
2.Homology groups
3.Examples
4.Simplicial maps
5.Stellar subdivision
6.Invariance
Chapter 9 Degree and Lefschetz number
1.Maps of spheres
2.The Euler-Poincare formula
3.The Borsuk-Ulam theorem
4.The Lefschetz fixed-point theorem
5.Dimension
Chapter 10 Knots and covering spaces
1.Examples of knots
2.The knot group
3.Seifert surfaces
4.Covering spaces
5.The Alexander polynomial
Appendix: Generators and relations
Bibliography
Index
展開全部
基本拓撲學Basic topology 作者簡介
M.A.Armstrong,英國杜倫大學(Durham University)數學系教授。
書友推薦
- >
唐代進士錄
- >
史學評論
- >
有舍有得是人生
- >
我從未如此眷戀人間
- >
自卑與超越
- >
推拿
- >
二體千字文
- >
巴金-再思錄
本類暢銷