巖石材料尺度效應(yīng)及破斷結(jié)構(gòu)效應(yīng)(Scale-Size and Structural Effects of Rock Ma 版權(quán)信息
- ISBN:9787302559320
- 條形碼:9787302559320 ; 978-7-302-55932-0
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
巖石材料尺度效應(yīng)及破斷結(jié)構(gòu)效應(yīng)(Scale-Size and Structural Effects of Rock Ma 本書特色
本書內(nèi)容新穎、豐富、實用,可供從事巖石參數(shù)測試、巖體力學(xué)試驗、巖土工程和地下工程實踐的科研工作者、高校師生以及現(xiàn)場工程技術(shù)人員參考和借鑒本書總結(jié)了作者近年來關(guān)于巖石力學(xué)基礎(chǔ)理論、試驗方法以及創(chuàng)新技術(shù)和工程應(yīng)用的*新研究成果。
本書總結(jié)了作者近年來關(guān)于巖石力學(xué)基礎(chǔ)理論、試驗方法以及創(chuàng)新技術(shù)和工程應(yīng)用的*新研究成果。
巖石材料尺度效應(yīng)及破斷結(jié)構(gòu)效應(yīng)(Scale-Size and Structural Effects of Rock Ma 內(nèi)容簡介
本書總結(jié)了作者近年來關(guān)于巖石力學(xué)基礎(chǔ)理論、試驗方法以及創(chuàng)新技術(shù)和工程應(yīng)用的近期新研究成果。全書分巖石試驗尺度效應(yīng)、巖石斷裂韌度確定、巖石節(jié)理尺度效應(yīng)、微震監(jiān)測及應(yīng)用、工程巖體結(jié)構(gòu)效應(yīng)5章,主要闡述了靠前外關(guān)于巖石材料斷裂過程的尺度效應(yīng)和結(jié)構(gòu)效應(yīng)的試驗技術(shù)、強度準(zhǔn)則、微震監(jiān)測及工程應(yīng)用、工程巖體結(jié)構(gòu)失穩(wěn)機制及控制技術(shù)等內(nèi)容,附有大量的圖表和工程實例。本書內(nèi)容豐富、新穎、實用,可為從事隧道工程、巖土工程、采礦工程以及巖石力學(xué)的科研工作者、高等院校師生以及現(xiàn)場工程技術(shù)人員提供參考和借鑒。
巖石材料尺度效應(yīng)及破斷結(jié)構(gòu)效應(yīng)(Scale-Size and Structural Effects of Rock Ma 目錄
Contributors
About the authors
Preface
Acknowledgments
1.Size effect of rock samples
Hossein Masoumi
1.1 Size effect law for intact rock
1.1.1 Introduction
1.1.2 Background
1.1.3 Experimental study
1.1.4 Unified size effect law
1.1.5 Reverse size effects in UCS results
1.1.6 Contact area in size efects of point load results
1.1.7 Conclusions
1.2 Length-to-diameter ratio on point load strength index
1.2.1 Introduction
1.2.2 Background
1.2.3 Methodology
1.2.4 Valid and invalid failure modes
1.2.5 Conventional point load strength index size effect
1.2.6 Size effect of point load strength index
1.2.7 Conclusions
1.3 Plasticity model for size-dependent behavior
1.3.1 Introduction
1.3.2 Notation and unified size effect law
1.3.3 Bounding surface plasticity
1.3.4 Model ingredients
1.3.5 Model calibration
1.3.6 Conclusions
1.4 Scale-size dependency of intact rock
1.4.1 Introduction
1.4.2 Rock types
1.4.3 Experimental procedure
1.4.4 Comparative study
1.4.5 Conclusion
1.5 Scale effect into multiaxial failure criterion
1.5.1 Introduction
1.5.2 Background
1.5.3 Scale and Weibull statistics into strength measurements
1.5.4 The modified failure criteria
1.5.5 Comparison with experimental data
1.5.6 Conclusions
1.6 Size-dependent Hoek-Brown failure criterion
1.6.1 Introduction
1.6.2 Background
1.6.3 Size-dependent Hoek-Brown failure criterion
1.6.4 Example of application
1.6.5 Conclusions
References
Further reading
2.Rock fracture toughness
Sheng Zhang
2.1 Fracture toughness of splitting disc specimens
2.1.1 Introduction
2.1.2 Preparation of disc specimens
2.1.3 Fracture toughness of five types of specimens
2.1.4 Load-displacement curve of disc splitting test
2.1.5 Comparison of disc splitting test results
2.1.6 Conclusions
2.2 Fracture toughness of HCFBD
2.2.1 Introduction
2.2.2 Test method and principle
2.2.3 HCFBD specimens with prefabricated cracks
2.2.4 Calibration of maximum dimensionless SIF Ymax
2.2.5 Results and analysis
2.2.6 Conclusions
2.3 Crack length on dynamic fracture toughness
2.3.1 Introduction
2.3.2 Dynamic impact splitting test
2.3.3 Results and discussion
2.3.4 DFT irrespective of configuration and size
2.3.5 Conclusions
2.4 Crack width on fracture toughness
2.4.1 Introduction
2.4.2 NSCB three-point flexural test
2.4.3 Width influence on prefabricated crack
2.4.4 Width influence of cracks on tested fracture toughness
2.4.5 Method for eliminating influence of crack width
2.4.6 Conclusions
2.5 Loading rate effect of fracture toughness
2.5.1 Introduction
2.5.2 Specimen preparation
2.5.3 Test process and data procesing
3.5.4 Results and analysis
2.5.5 Conclusions
2.6 Hole infiuence on dynamic fracture toughnes
2.6.1 Introduction
2.6.2 Dynamic cleaving specimens and equipment
2.6.3 SHPB test and data record
2.6.4 Dynamic finite element analysis
2.6.5 Results analysis and discussion
2.6.6 Conclusions
2.7 Dynamic fracture toughness of holed-cracked discs
2.7.1 Introduction
2.7.2 Dynamic fracture toughness test
2.7.3 Experimental recordings and results
2.7.4 Dynamic stress intensity factor in spatial-temporal domain
2.7.5 Conclusions
2.8 Dynamic fracture propagation toughness of P-CCNBD
2.8.1 Introduction
2.8.2 Experimental preparation
2.8.3 Experimental recording and data processing
2.8.4 Numerical calculation of dynamic stress intensity factor
2.8.5 Determine dynamic fracture toughness
2.8.6 Conclusions
References
Further reading
3.Scale effect of the rock joint
Joung Oh
3.1 Fractal scale effect of opened joints
3.1.1 Introduction
3.1.2 Scale effect based on fractal method
3.1.3 Constitutive model for opened rock joints
3.1.4 Validation of proposed scaling relationships
3.1.5 Conclusions
3.2 Joint constitutive model for multiscale asperity degradation
3.2.1 Introduction
3.2.2 Quantification of iregular joint profile
3.2.3 Description of proposed model
3.2.4 Joint model validation
3.2.5 Conclusions
3.3 Shear model incorporating small-and large-scale iregularities
3.3.1 Introduction
3.3.2 Constitutive model for small-scale joints
3.3.3 Constitutive model for large-scale joints
3.3.4 Correlation with experimental data
3.3.5 Conclusions
3.4 Opening effect on joint shear behavior
3.4.1 Introduction
3.4.2 Constitutive model for joint opening effect
3.4.3 Opening model performance
3.4.4 Discussion
3.4.5 Conclusions
3.5 Dilation of saw-toothed rock joint
3.5.1 Introduction
3.5.2 Constitutive law for contacts in DEM
3.5.3 Model calibration
3.5.4 Direct shear test simulation
3.5.5 Conclusions
3.6 Joint mechanical behavior with opening values
3.6.1 Introduction
3.6.2 Normal deformation of opened joints
3.6.3 Direct shear tests
3.6.4 Results analysis and discussion
3.6.5 Conclusions
3.7 Joint constitutive model correlation with field observations
3.7.1 Introduction
3.7.2 Model description and implementation
3.7.3 Stability analysis of large-scale rock structures
3.7.4 Conclusions
References
Further reading
4.Microseismic monitoring and application
Shuren Wang and Xiangxin Liu
4.1 Acoustic emission of rock plate instability
4.1.1 Introduction
4.1.2 Materials and methods
4.1.3 Results analysis
4.1.4 Discussion of the magnitudes of AE events
4.1.5 Conclusions
4.2 Prediction method of rockburst
4.2.1 Introduction
4.2.2 Microseismic monitoring system
4.2.3 Active microseismicity and faults
4.2.4 Rockburst prediction indicators
4.2.5 Conclusions
4.3 Near-fault mining-induced microseismic
4.3.1 Introduction
4.3.2 Engineering situations
4.3.3 Computational model
4.3.4 Result analysis and discussion
4.3.5 Conclusions
4.4 Acoustic emision recognition of diferent rocks
4.4.1 Introduction
4.4.2 Experiment preparation and methods
4.4.3 Results and discussion
4.4.4 AE signal recognition using ANN
4.4.5 Conclusions
4.5 Acoustic emission in tunnels
4.5.1 Introduction
4.5.2 Rockburst experiments in a tunnel
4.5.3 Experimental results
4.5.4 AE characteristics of rockburst
4.5.5 Discussion
4.5.6 Conclusions
4.6 AE and infrared monitoring in tunnels
4.6.1 Introduction
4.6.2 Simulating rockbursts in a tunnel
4.6.3 Experimental results
4.6.4 Rockburst characteristics in tunnels
4.6.5 Conclusions
References
Further reading
5.Structural effect of rock blocks
Shuren Wang and Wenbing Guo
5.1 Cracked roof rock beams
5.1.1 Introduction
5.1.2 Mechanical model of a cracked roof beam
5.1.3 Instability feature of cracked roof beams
5.1.4 Mechanical analysis of roof rock beams
5.1.5 Conclusions
5.2 Evolution characteristics of fractured strata structures
5.2.1 Introduction
5.2.2 Engineering background
5.2.3 Mechanical and computational model
5.2.4 Results and discussion
5.2.5 Conclusions
5.3 Pressure arching characteristics in roof blocks
5.3.1 Introduction
5.3.2 Pressure arching characteristics
5.3.3 Evolution characteristics of pressure arch
5.3.4 Results and discussion
5.3.5 Conclusions
5.4 Composite pressure arch in thin bedrock
5.4.1 Introduction
5.4.2 Engineering background and pressure arch structure
5.4.3 Computational model and similar experiment
5.4.4 Results and discussion
5.4.5 Conclusions
5.5 Pressure arch performances in thick bedrock
5.5.1 Introduction
5.5.2 Engineering background
5.5.3 Pressure-arch analysis and experimental methods
5.5.4 Results and discussion
5.5.5 Conclusions
5.6 Elastic energy of pressure arch evolution
5.6.1 Introduction
5.6.2 Engineering background
5.6.3 Pressure-arch analysis and computational model
5.6.4 Simulation results and discussion
5.6.5 Conclusions
5.7 Height predicting of water-conducting zone
5.7.1 Introduction
5.7.2 High-intensity mining in China
5.7.3 OFT influence on FWCZ development
5.7.4 Development mechanism of FWCZ based on OFT
5.7.5 Example analysis and numerical simulation
5.7.6 Engineering analogy
5.7.7 Conclusions
References
Further reading
Index
展開全部
巖石材料尺度效應(yīng)及破斷結(jié)構(gòu)效應(yīng)(Scale-Size and Structural Effects of Rock Ma 作者簡介
王樹仁 博士,教授,主要從事巖土工程、巖石力學(xué)、采礦工程和數(shù)值模擬計算等方面的科研與教學(xué)工作。 主持及完成國家自然科學(xué)基金項目(51774112;51474188; 51074140; 51310105020)、河北省自然科學(xué)基金項目(E2014203012)、河北省科技支撐項目(072756183)和河南省科技廳國際合作項目(162102410027; 182102410060)等;谏鲜鲅芯,榮獲國家科技進步二等獎1項,省部級二等獎5項,軍隊及省部級科技進步三等獎3項。榮獲2015年澳大利亞政府資助奮進研究學(xué)者,現(xiàn)為河南省特聘教授和澳大利亞新南威爾士大學(xué)兼職教授。