Ordinary differential equations(常微分方程) 版權(quán)信息
- ISBN:9787519255831
- 條形碼:9787519255831 ; 978-7-5192-5583-1
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
Ordinary differential equations(常微分方程) 本書特色
本書是在1996年第六版《常微分方程》(德文)一書的基礎(chǔ)上編寫而成的。本書主要介紹了常微分方程的基礎(chǔ)理論,內(nèi)容包括:可積一階微分方程,微分方程解的存在性和*性,微分方程的初極值問題,邊值問題和特征值問題,穩(wěn)定性與漸進(jìn)穩(wěn)定性理論。此外,本書還增加了在一般相關(guān)教材中很少涉及但具有一定難度的內(nèi)容,并對一些復(fù)雜基本定理給出了新的證明。閱讀本書須具備一定的計(jì)算代數(shù)、線性代數(shù)及泛函分析的基礎(chǔ)知識。
目次:一階微分方程,一些可積的例子;一階微分方程理論;一階系統(tǒng),離階微分方程;線性微分方程;復(fù)線性系統(tǒng);邊值問題與特征值問題;穩(wěn)定性與漸進(jìn)穩(wěn)定性。
Ordinary differential equations(常微分方程) 內(nèi)容簡介
本書是在1996年第六版《常微分方程》(德文)一書的基礎(chǔ)上編寫而成的。本書主要介紹了常微分方程的基礎(chǔ)理論,內(nèi)容包括:可積一階微分方程,微分方程解的存在性,微分方程的初極值問題,邊值問題和特征值問題,穩(wěn)定性與漸進(jìn)穩(wěn)定性理論。此外,本書還增加了在一般相關(guān)教材中很少涉及但具有一定難度的內(nèi)容,并對一些復(fù)雜基本定理給出了新的證明。閱讀本書須具備一定的計(jì)算代數(shù)、線性代數(shù)及泛函分析的基礎(chǔ)知識。
目次:一階微分方程,一些可積的例子;一階微分方程理論;一階系統(tǒng),離階微分方程;線性微分方程;復(fù)線性系統(tǒng);邊值問題與特征值問題;穩(wěn)定性與漸進(jìn)穩(wěn)定性。
Ordinary differential equations(常微分方程) 目錄
Preface
Note to the Reader
Introduction
Chapter I. First Order Equations: Some Integrable Cases
1. Explicit First Order Equations
2. The Linear Differential Equation. Related Equations
Supplement: The Generalized Logistic Equation
3. Differential Equations for Families of Curves. Exact Equations
4. Implicit First Order Differential Equations
Chapter II: Theory of First Order Differential Equations
5. Tools from Functional Analysis
6. An Existence and Uniqueness Theorem
Supplement: Singular Initial Value Problems
7. The Peano Existence Theorem
Supplement: Methods of Functional Analysis
8. Complex Differential Equations. Power Series Expansions
9. Upper and Lower Solutions. Maximal and Minimal Integrals
Supplement: The Separatrix
Chapter III: First Order Systems. Equations of Higher Order
10. The Initial Value Problem for a System of First Order
Supplement I: Differential Inequalities and Invariance
Supplement II: Differential Equations in the Senseof Caratheodory
11. Initial Value Problems for Equations of Higher Order
Supplement: Second Order Differential Inequalities
12. Continuous Dependence of Solutions
Supplement: General Uniqueness and Dependence Theorems
13. Dependence of Sohltions on Initial Values and Parameters
Chapter IV: Linear Differential Equations
14. Linear Systems
15. Homogeneous Linear Systems
16. Inhomogeneous Systems
Supplement: L1-Estimation of C-Solutions
17. Systems with Constant Coefficients
18. Matrix Functions. Inhomogeneous Systems
Supplement: Floquet Theory
19. Linear Differential Equations of Order n
20. Linear Equations of Order n with Constant Coefficients
Supplement: Linear Differential Equations with
Periodic Coefficients
Chapter V: Complex Linear Systems
21. Homogeneous Linear Systems in the Regular Case
22. Isolated Singularities
23. Weakly Singular Points. Equations of Fuchsian Type
24. Series Expansion of Solutions
25. Second Order Linear Equations
Chapter VI: Boundary Value and Eigenvalue Problems
26. Boundary Value Problems
Supplement I: Maximum and Minimum Principles
Supplement II: Nonlinear Boundary Value Problems
27. The Sturm-Liouville Eigenvalue Problem
Supplement: Rotation-Symmetric Elliptic Problems
28. Compact Self-Adjoint Operators in Hilbert Space
Chapter VII: Stability and Asymptotic Behavior
29. Stability
30. The Method of Lyapunov
Appendix
A. Topology
B. Real Analysis
C. Complex Analysis
D. Functional Analysis
Solutions and Hints for Selected Exercises
Literature
Index
Notation
展開全部
Ordinary differential equations(常微分方程) 作者簡介
《常微分方程》作者W.沃爾特(Wolfgang Walter)是德國卡爾斯魯厄大學(xué)(Universität Karlsruhe)教授。