中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN

包郵 FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN

出版社:華中科技大學出版社出版時間:2018-10-01
開本: 其他 頁數: 176
本類榜單:工業技術銷量榜
中 圖 價:¥44.5(3.5折) 定價  ¥128.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
溫馨提示:5折以下圖書主要為出版社尾貨,大部分為全新(有塑封/無塑封),個別圖書品相8-9成新、切口
有劃線標記、光盤等附件不全詳細品相說明>>
本類五星書更多>

FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN 版權信息

FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN 本書特色

This book formulates the large deformation of a 3-D compliant beam as a boundary value problem (BVP). Unlike other methods, such as finite element (FE) method, that formulate problems based on displacements and/or rotational angles, the BVP formulation has been derived using curvatures that are more fundamental in presenting nonlinear geometries. Since in the case of finite rotation, superposition holds for curvatures but not for rotational angles, the model is much simpler and the resulting computational process is more efficient. The above advantages have been employed in this research to analyze compliant mechanism designs using curvature-based beam models. Along with the method of deriving the compliant members in the same global reference frame, a generalized constraint acting on a compliant mechanism is presented to replace traditional boundary constraints (such as fixed, pinned or sliding constraint) where none or only one degree of freedom (DOF) is allowed. Inspired by the dexterity of a natural biological joint that offers efficient multi-axis rotation, this research extends to the modeling method of a generalized constraint (or referred to here as a bio-joint constraint) to develop designs emulating commonly observed human motions of multi-DOFs . Using a multiple shooting method (MSM), the BVP is treated as an initial value problem and higher order accuracy can be achieved than finite element (FE) methods.

FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN 內容簡介

This book formulates the large deformation of a 3-D compliant beam as a boundary value problem (BVP). Unlike other methods, such as finite element (FE) method, that formulate problems based on displacements and/or rotational angles, the BVP formulation has been derived using curvatures that are more fundamental in presenting nonlinear geometries. Since in the case of finite rotation, superposition holds for curvatures but not for rotational angles, the model is much simpler and the resulting computational process is more efficient. The above advantages have been employed in this research to analyze compliant mechanism designs using curvature-based beam models. Along with the method of deriving the compliant members in the same global reference frame, a generalized constraint acting on a compliant mechanism is presented to replace traditional boundary constraints (such as fixed, pinned or sliding constraint) where none or only one degree of freedom (DOF) is allowed. Inspired by the dexterity of a natural biological joint that offers efficient multi-axis rotation, this research extends to the modeling method of a generalized constraint (or referred to here as a bio-joint constraint) to develop designs emulating commonly observed human motions of multi-DOFs . Using a multiple shooting method (MSM), the BVP is treated as an initial value problem and higher order accuracy can be achieved than finite element (FE) methods.

FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN 目錄

Acknowledgements/ii Table of contents/iii LIST OF TABLES/vi LIST OF FIGURES/vii List of SYMBOLS/xi List of ABBREVIATIONS/xiii Preface/xv CHAPTER I Introduction/1 1.1 Background and Motivation/1 1.2 Problem Description and Objectives/1 1.3 Review of Related Work/2 1.3.1 Compliant mechanisms/3 1.3.2 Joint constraint/4 1.3.3 Numerical methods for boundary value problems/6 1.3.4 Flexible robotics for structural health monitoring/7 1.3.5 Human-centered equipment (Exoskeleton)/9 1.3.6 Process state monitoring for manufacturing/10 1.3.7 Poultry-meat processing/13 1.4 Book Outline/14 CHAPTER II Fundamentals of mathematics/15 2.1 Differential Geometry/15 2.2 Curvature of a 3D Beam/16 2.3 Kinematics of a 3D Beam/18 2.4 Kinematics of an Annular Plate/23 2.5 Multiple Shooting Method/26 2.6 Summary/27 CHAPTER III Flexible Elements/28 3.1 Two-dimensional Beam/28 3.2 Three-dimensional Beam/31 3.3 Annular Plate/38 3.4 General Constraint/44 3.5 Summary/54 CHAPTER IV Flexonic Mobile Node/55 4.1 Design Concept/55 4.1.1 Dimension/56 4.1.2 Attachment/57 4.1.3 Flexibility/57 4.2 Functionalities/59 4.2.1 Sensor attachment/60 4.2.2 Convex corner negotiation (2D)/63 4.2.3 Convex corner negotiation (3D)/66 4.2.4 Concave corner negotiation/69 4.2.5 Environment monitoring/70 4.3 Experimental Validation/74 4.3.1 First prototype of FMN/74 4.3.2 Second prototype of FMN/82 4.4 Structural Health Monitoring/85 4.4.1 Steel frame structure/86 4.4.2 Space frame bridge/88 4.5 Summary/93 CHAPTER V Intelligent Manufacturing/94 5.1 Dynamic Analysis/94 5.1.1 Parametric Effects on |A(ωnm)| (DC1)/96 5.1.2 Illustrative example (DC1)/97 5.1.3 Numerical Verification (DC1 and DC2)/99 5.2 Parameter Identification and Sensing Configuration/101 5.2.1 Modal Damping Coefficients/102 5.2.2 Step Response/104 5.2.3 Robustness of Sensor Performance/105 5.2.4 Sensor Configuration Design/106 5.3 Formulation of Field Reconstruction/108 5.3.1 Field Reconstruction Algorithm/110 5.3.2 Numerical Verification/111 5.3.3 Numerical Evaluation of Reconstruction Algorithm/113 5.4 Experiment Results and Illustrative Application/114 5.4.1 Free Vibration of Non-rotating Plate/115 5.4.2 Field Reconstruction for Machining/118 5.5 Summary/121 CHAPTER VI Bio-inspired Exoskeleton/122 6.1 Human Knee Kinematics/122 6.2 Knee Joint Dynamics/125 6.3 Knee-exoskeleton Coupling/129 6.3.1 Coupled Kinematics/131 6.3.2 Coupled Dynamics/132 6.4 Experimental Investigation/132 6.4.1 Design Configurations/133 6.4.2 Experimental Test Bed/134 6.4.3 Experimental Methods/135 6.4.4 Results and Discussion/137 6.5 Summary/145 CHAPTER VII Musculoskeleton Modeling/146 7.1 Musculoskeletal System/146 7.1.1 Coordinates/147 7.1.2 Bio-joint Constraint/148 7.1.3 Clavicle Model/150 7.1.4 Soft Tissue Mechanics/154 7.2 Experimental Investigation/155 7.2.1 Elastic modulus of clavicle/155 7.2.2 Ligament mechanics/159 7.3 Illustrative Application to Wing Manipulation/162 7.4 Summary/165 References/167 Authors/176
展開全部

FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN 作者簡介

Jiajie Guo?received the B.S. degree from the Department of Mechanics and Engineering Science at Peking University, Beijing, in 2006, and M.S. and Ph.D. degrees from Mechanical Engineering, Georgia Institute of Technology, Atlanta, in 2009 and 2011, respectively. He is currently an Associate Professor in the State Key Laboratory of Digital Manufacturing and Equipment and the School of Mechanical Science and Engineering at Huazhong University of Science and Technology, Wuhan, China. He is an IEEE and ASME member, and a program committee member of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. His current research interests include human-centered robotics, flexible mechatronics, manufacturing and system dynamics/control. He has published more than thirty peer-reviewed technical papers in journals and conferences, and has been awarded the best paper award from IEEE/ASME Transactions on Mechatronics in 2015. Kok-Meng Lee?earned his B.S. degree from the University of Buffalo, the State University of New York, Buffalo, NY, USA, in 1980, and S. M. and Ph. D. degrees from Massachusetts Institute of Technology, Cambridge, MA, USA, in 1982 and 1985, respectively. He is currently Professor of Mechanical Engineering at Georgia Institute of Technology, Atlanta, GA, USA. He is also Distinguished Professor with the State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, China, under Thousand Talents Plan. Prof. Lee’s research interests include system dynamics/control, robotics, automation, and mechatronics. He is a world renowned researcher with more than 30 years of research experience in magnetic field modeling and design, optimization and implementation of electromagnetic actuators. He has published over 150 peer-reviewed papers and he holds eight patents in machine vision, three degrees of freedom (DOF) spherical motor/encoder, and live-bird handling system. He is IEEE/ASME Fellow and was the Editor-in-Chief for the IEEE/ASME Transactions on Mechatronics from 2008 to 2013. Recognitions of his research contributions include the National Science Foundation (NSF) Presidential Young Investigator, Sigma Xi Junior Faculty Research, International Hall of Fame New Technology, and Kayamori Best Paper awards.?

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 玻璃钢板-玻璃钢防腐瓦-玻璃钢材料-广东壹诺 | 蓝鹏测控平台 - 智慧车间系统 - 车间生产数据采集与分析系统 | 交变/复合盐雾试验箱-高低温冲击试验箱_安奈设备产品供应杭州/江苏南京/安徽马鞍山合肥等全国各地 | 济南网站建设_济南网站制作_济南网站设计_济南网站建设公司_富库网络旗下模易宝_模板建站 | 温州食堂承包 - 温州市尚膳餐饮管理有限公司| 网架支座@球铰支座@钢结构支座@成品支座厂家@万向滑动支座_桥兴工程橡胶有限公司 | 杭州代理记账费用-公司注销需要多久-公司变更监事_杭州福道财务管理咨询有限公司 | 螺旋绞龙叶片,螺旋输送机厂家,山东螺旋输送机-淄博长江机械制造有限公司 | 西安中国国际旅行社(西安国旅) | 高空重型升降平台_高空液压举升平台_高空作业平台_移动式升降机-河南华鹰机械设备有限公司 | 合肥升降机-合肥升降货梯-安徽升降平台「厂家直销」-安徽鼎升自动化科技有限公司 | 对夹式止回阀厂家,温州对夹式止回阀制造商--永嘉县润丰阀门有限公司 | 综合管廊模具_生态,阶梯护坡模具_检查井模具制造-致宏模具厂家 | ALC墙板_ALC轻质隔墙板_隔音防火墙板_轻质隔墙材料-湖北博悦佳 | 深圳激光打标机_激光打标机_激光焊接机_激光切割机_同体激光打标机-深圳市创想激光科技有限公司 深圳快餐店设计-餐饮设计公司-餐饮空间品牌全案设计-深圳市勤蜂装饰工程 | 冷却塔降噪隔音_冷却塔噪声治理_冷却塔噪音处理厂家-广东康明冷却塔降噪厂家 | 超声骨密度仪,双能X射线骨密度仪【起草单位】,骨密度检测仪厂家 - 品源医疗(江苏)有限公司 | 安全,主动,被动,柔性,山体滑坡,sns,钢丝绳,边坡,防护网,护栏网,围栏,栏杆,栅栏,厂家 - 护栏网防护网生产厂家 | 热熔胶网膜|pes热熔网膜价格|eva热熔胶膜|热熔胶膜|tpu热熔胶膜厂家-苏州惠洋胶粘制品有限公司 | 能耗监测系统-节能监测系统-能源管理系统-三水智能化 | 流量检测仪-气密性检测装置-密封性试验仪-东莞市奥图自动化科技有限公司 | 深圳南财多媒体有限公司介绍| 雨燕360体育免费直播_雨燕360免费NBA直播_NBA篮球高清直播无插件-雨燕360体育直播 | hdpe土工膜-防渗膜-复合土工膜-长丝土工布价格-厂家直销「恒阳新材料」-山东恒阳新材料有限公司 ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 喷砂机厂家_自动除锈抛丸机价格-成都泰盛吉自动化喷砂设备 | 通风天窗,通风气楼,屋顶通风天窗,屋顶通风天窗公司 | 无锡装修装潢公司,口碑好的装饰装修公司-无锡索美装饰设计工程有限公司 | 北京亦庄厂房出租_经开区产业园招商信息平台 | 高尔夫球杆_高尔夫果岭_高尔夫用品-深圳市新高品体育用品有限公司 | 伺服电机维修、驱动器维修「安川|三菱|松下」伺服维修公司-深圳华创益 | 有机肥设备生产制造厂家,BB掺混肥搅拌机、复合肥设备生产线,有机肥料全部加工设备多少钱,对辊挤压造粒机,有机肥造粒设备 -- 郑州程翔重工机械有限公司 | 成都思迪机电技术研究所-四川成都思迪编码器 | 气胀轴|气涨轴|安全夹头|安全卡盘|伺服纠偏系统厂家-天机传动 | 砂磨机_立式纳米砂磨机_实验室砂磨机-广州儒佳化工设备厂家 | 空气净化器租赁,空气净化器出租,全国直租_奥司汀净化器租赁 | 专注氟塑料泵_衬氟泵_磁力泵_卧龙泵阀_化工泵专业品牌 - 梭川泵阀 | 防渗膜厂家|养殖防渗膜|水产养殖防渗膜-泰安佳路通工程材料有限公司 | 创富网-B2B网站|供求信息网|b2b平台|专业电子商务网站 | 专业的新乡振动筛厂家-振动筛品质保障-环保振动筛价格—新乡市德科筛分机械有限公司 | 找果网 | 苹果手机找回方法,苹果iPhone手机丢了找回,认准找果网! | 美国HASKEL增压泵-伊莱科elettrotec流量开关-上海方未机械设备有限公司 |