中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請 | 注冊
> >>
基于回歸視野的統(tǒng)計(jì)學(xué)習(xí)

包郵 基于回歸視野的統(tǒng)計(jì)學(xué)習(xí)

出版社:世界圖書出版公司出版時(shí)間:2018-05-01
開本: 23cm 頁數(shù): 358頁
中 圖 價(jià):¥41.8(6.1折) 定價(jià)  ¥68.0 登錄后可看到會(huì)員價(jià)
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

基于回歸視野的統(tǒng)計(jì)學(xué)習(xí) 版權(quán)信息

基于回歸視野的統(tǒng)計(jì)學(xué)習(xí) 本書特色

《基于回歸視野的統(tǒng)計(jì)學(xué)習(xí)》作者是賓夕法尼亞大學(xué)數(shù)理統(tǒng)計(jì)系教授,研究領(lǐng)域廣泛,在社會(huì)科學(xué)和自然科學(xué)均有很深的造詣。本書主要闡述統(tǒng)計(jì)學(xué)習(xí)的應(yīng)用知識,各章還有實(shí)際應(yīng)用實(shí)例,可作為統(tǒng)計(jì)、社會(huì)科學(xué)和生命科學(xué)等相關(guān)領(lǐng)域的研究生和科研人員的參考書。

基于回歸視野的統(tǒng)計(jì)學(xué)習(xí) 內(nèi)容簡介

《基于回歸視野的統(tǒng)計(jì)學(xué)習(xí)》作者是賓夕法尼亞大學(xué)數(shù)理統(tǒng)計(jì)系教授,研究領(lǐng)域廣泛,在社會(huì)科學(xué)和自然科學(xué)均有很深的造詣。本書主要闡述統(tǒng)計(jì)學(xué)習(xí)的應(yīng)用知識,各章還有實(shí)際應(yīng)用實(shí)例,可作為統(tǒng)計(jì)、社會(huì)科學(xué)和生命科學(xué)等相關(guān)領(lǐng)域的研究生和科研人員的參考書。

基于回歸視野的統(tǒng)計(jì)學(xué)習(xí) 目錄

Preface 1 Statistical Learning as a Regression Problem 1.1 Getting Started 1.2 Setting the Regression Context 1.3 The Transition to Statistical Learning 1.3.1 Some Goals of Statistical Learning 1.3.2 Statistical Inference 1.3.3 Some Initial Cautions 1.3.4 A Cartoon Illustration 1.3.5 A Taste of Things to Come 1.4 Some Initial Concepts and Definitions 1.4.1 Overall Goals 1.4.2 Loss Functions and Related Concepts 1.4.3 Linear Estimators 1.4.4 Degrees of Freedom 1.4.5 Model Evaluation 1.4.6 Model Selection 1.4.7 Basis Functions 1.5 Some Common Themes 1.6 Summary and Conclusions 2 Regression Splines and Regression Smoothers 2.1 Introduction 2.2 Regression Splines 2.2.1 Applying a Piecewise Linear Basis 2.2.2 Polynomial Regression Splines 2.2.3 Natural Cubic Splines 2.2.4 B-Splines 2.3 Penalized Smoothing 2.3.1 Shrinkage 2.3.2 Shrinkage and Statistical Inference 2.3.3 Shrinkage: So What? 2.4 Smoothing Splines 2.4.1 An Illustration 2.5 Locally Weighted Regression as a Smoother 2.5.1 Nearest Neighbor Methods 2.5.2 Locally Weighted Regression 2.6 Smoothers for Multiple Predictors 2.6.1 Smoothing in Two Dimensions 2.6.2 The Generalized Additive Model 2.7 Smoothers with Categorical Variables 2.7.1 An Illustration 2.8 Locally Adaptive Smoothers 2.9 The Role of Statistical Inference 2.9.1 Some Apparent Prerequisites 2.9.2 Confidence Intervals 2.9.3 Statistical Tests 2.9.4 Can Asymptotics Help? 2.10 Software Issues 2.11 Summary and Conclusions 3 Classification and Regression Trees (CART) 3.1 Introduction 3.2 An Overview of Recursive Partitioning with CART 3.2.1 Tree Diagrams 3.2.2 Classification and Forecasting with CART 3.2.3 Confusion Tables 3.2.4 CART as an Adaptive Nearest Neighbor Method 3.2.5 What CART Needs to Do 3.3 Splitting a Node 3.4 More on Classification 3.4.1 Fitted Values and Related Terms 3.4.2 An Example 3.5 Classification Errors and Costs 3.5.1 Default Costs in CART 3.5.2 Prior Probabilities and Costs 3.6 Pruning 3.6.1 Impurity Versus Rа(T) 3.7 Missing Data 3.7.1 Missing Data with CART 3.8 Statistical Inference with CART 3.9 Classification Versus Forecasting 3.10 Varying the Prior, Costs, and the Complexity Penalty 3.11 An Example with Three Response Categories 3.12 CART with Highly Skewed Response Distributions 3.13 Some Cautions in Interpreting CART Results 3.13.1 Model Bias 3.13.2 Model Variance 3.14 Regression Trees 3.14.1 An Illustration 3.14.2 Some Extensions 3.14.3 Multivariate Adaptive Regression Splines (MARS) 3.15 Software Issues 3.16 Summary and Conclusions 4 Bagging 4.1 Introduction 4.2 Overfitting and Cross-Validation 4.3 Bagging as an Algorithm 4.3.1 Margins 4.3.2 Out-Of-Bag Observations 4.4 Some Thinking on Why Bagging Works 4.4.1 More on Instability in CART 4.4.2 How Bagging Can Help 4.4.3 A Somewhat More Formal Explanation 4.5 Some Limitations of Bagging 4.5.1 Sometimes Bagging Does Not Help 4.5.2 Sometimes Bagging Can Make the Bias Worse 4.5.3 Sometimes Bagging Can Make the Variance Worse 4.5.4 Losing the Trees for the Forest 4.5.5 Bagging Is Only an Algorithm 4.6 An Example 4.7 Bagging a Quantitative Response Variable 4.8 Software Considerations 4.9 Summary and Conclusions 5 Random Forests 5.1 Introduction and Overview 5.1.1 Unpacking How Random Forests Works 5.2 An Initial Illustration 5.3 A Few Formalities 5.3.1 What Is a Random Forest? 5.3.2 Margins and Generalization Error for Classifiers in General 5.3.3 Generalization Error for Random Forests 5.3.4 The Strength of a Random Forest 5.3.5 Dependence 5.3.6 Implications 5.4 Random Forests and Adaptive Nearest Neighbor Methods 5.5 Taking Costs into Account in Random Forests 5.5.1 A Brief Illustration 5.6 Determining the Importance of the Predictors 5.6.1 Contributions to the Fit 5.6.2 Contributions to Forecasting Skill 5.7 Response Functions 5.7.1 An Example 5.8 The Proximity Matrix 5.8.1 Clustering by Proximity Values 5.8.2 Using Proximity Values to Impute Missing Data 5.8.3 Using Proximities to Detect Outliers 5.9 Quantitative Response Variables 5.10 Tuning Parameters 5.11 An Illustration Using a Binary Response Variable 5.12 An Illustration Using a Quantitative Response Variable 5.13 Software Considerations 5.14 Summary and Conclusions 5.14.1 Problem Set 1 5.14.2 Problem Set 2 5.14.3 Problem Set 3 6 Boosting 6.1 Introduction 6.2 Adaboost 6.2.1 A Toy Numerical Example of Adaboost 6.2.2 A Statistical Perspective on Adaboost 6.3 Why Does Adaboost Work So Well? 6.3.1 Least Angle Regression (LARS) 6.4 Stochastic Gradient Boosting 6.4.1 Tuning Parameters 6.4.2 Output 6.5 Some Problems and Some Possible Solutions 6.5.1 Some Potential Problems 6.5.2 Some Potential Solutions 6.6 Some Examples 6.6.1 A Garden Variety Data Analysis 6.6.2 Inmate Misconduct Again 6.6.3 Homicides and the Impact of Executions 6.6.4 Imputing the Number of Homeless 6.6.5 Estimating Conditional Probabilities 6.7 Software Considerations 6.8 Summary and Conclusions 7 Support Vector Machines 7.1 A Simple Didactic Illustration 7.2 Support Vector Machines in Pictures 7.2.1 Support Vector Classifiers 7.2.2 Support Vector Machines 7.3 Support Vector Machines in Statistical Notation 7.3.1 Support Vector Classifiers 7.3.2 Support Vector Machines 7.3.3 SVM for Regression 7.4 A Classification Example 7.4.1 SVM Analysis with a Linear Kernel 7.4.2 SVM Analysis with a Radial Kernel 7.4.3 Varying Tuning Parameters 7.4.4 Taking the Costs of Classification Errors into Account 7.4.5 Comparisons to Logistic Regression 7.5 Software Considerations 7.6 Summary and Conclusions 8 Broader Implications and a Bit of Craft Lore 8.1 Some Fundamental Limitations of Statistical Learning 8.2 Some Assets of Statistical Learning 8.2.1 The Attitude Adjustment 8.2.2 Selectively Better Performance 8.2.3 Improving Other Procedures 8.3 Some Practical Suggestions 8.3.1 Matching Tools to Jobs 8.3.2 Getting to Know Your Software 8.3.3 Not Forgetting the Basics 8.3.4 Getting Good Data 8.3.5 Being Sensitive to Overtuning 8.3.6 Matching Your Goals to What You Can Credibly Do 8.4 Some Concluding Observations References Index
展開全部

基于回歸視野的統(tǒng)計(jì)學(xué)習(xí) 作者簡介

《基于回歸視野的統(tǒng)計(jì)學(xué)習(xí)》作者是賓夕法尼亞大學(xué)數(shù)理統(tǒng)計(jì)系教授,研究領(lǐng)域廣泛,在社會(huì)科學(xué)和自然科學(xué)均有很深的造詣。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: cnc精密加工_数控机械加工_非标平键定制生产厂家_扬州沃佳机械有限公司 | 离子色谱自动进样器-青岛艾力析实验科技有限公司 | 蒸压釜_蒸养釜_蒸压釜厂家-山东鑫泰鑫智能装备有限公司 | 福州仿石漆加盟_福建仿石漆厂家-外墙仿石漆加盟推荐铁壁金钢(福建)新材料科技有限公司有保障 | 点焊机-缝焊机-闪光对焊机-电阻焊设备生产厂家-上海骏腾发智能设备有限公司 | 知企服务-企业综合服务(ZiKeys.com)-品优低价、种类齐全、过程管理透明、速度快捷高效、放心服务,知企专家! | 物联网卡_物联网卡购买平台_移动物联网卡办理_移动联通电信流量卡通信模组采购平台? | 洁净实验室工程-成都手术室净化-无尘车间装修-四川华锐净化公司-洁净室专业厂家 | 雨燕360体育免费直播_雨燕360免费NBA直播_NBA篮球高清直播无插件-雨燕360体育直播 | ◆大型吹塑加工|吹塑加工|吹塑代加工|吹塑加工厂|吹塑设备|滚塑加工|滚塑代加工-莱力奇塑业有限公司 | 3D全息投影_地面互动投影_360度立体投影_水幕灯光秀 | 广东银虎 蜂窝块状沸石分子筛-吸附脱硫分子筛-萍乡市捷龙环保科技有限公司 | 合肥通道闸-安徽车牌识别-人脸识别系统厂家-安徽熵控智能技术有限公司 | 成都茶楼装修公司 - 会所设计/KTV装修 - 成都朗煜装饰公司 | 铁艺,仿竹,竹节,护栏,围栏,篱笆,栅栏,栏杆,护栏网,网围栏,厂家 - 河北稳重金属丝网制品有限公司 山东太阳能路灯厂家-庭院灯生产厂家-济南晟启灯饰有限公司 | 常州减速机_减速机厂家_常州市减速机厂有限公司 | 深圳装修_店面装修设计_餐厅设计_装修全包价格-尚泰装饰设计 | 单级/双级旋片式真空泵厂家,2xz旋片真空泵-浙江台州求精真空泵有限公司 | 中高频感应加热设备|高频淬火设备|超音频感应加热电源|不锈钢管光亮退火机|真空管烤消设备 - 郑州蓝硕工业炉设备有限公司 | 动力配电箱-不锈钢配电箱-高压开关柜-重庆宇轩机电设备有限公司 聚天冬氨酸,亚氨基二琥珀酸四钠,PASP,IDS - 远联化工 | 舞台木地板厂家_体育运动木地板_室内篮球馆木地板_实木运动地板厂家_欧氏篮球地板推荐 | 高效复合碳源-多核碳源生产厂家-污水处理反硝化菌种一长隆科技库巴鲁 | 爱佩恒温恒湿测试箱|高低温实验箱|高低温冲击试验箱|冷热冲击试验箱-您身边的模拟环境试验设备技术专家-合作热线:400-6727-800-广东爱佩试验设备有限公司 | 曙光腾达官网-天津脚手架租赁-木板架出租-移动门式脚手架租赁「免费搭设」 | 砂尘试验箱_淋雨试验房_冰水冲击试验箱_IPX9K淋雨试验箱_广州岳信试验设备有限公司 | 内窥镜-工业内窥镜厂家【上海修远仪器仪表有限公司】 | vr安全体验馆|交通安全|工地安全|禁毒|消防|安全教育体验馆|安全体验教室-贝森德(深圳)科技 | 快速卷帘门_硬质快速卷帘门-西朗门业 | 通辽信息港 - 免费发布房产、招聘、求职、二手、商铺等信息 www.tlxxg.net | 中高频感应加热设备|高频淬火设备|超音频感应加热电源|不锈钢管光亮退火机|真空管烤消设备 - 郑州蓝硕工业炉设备有限公司 | wika威卡压力表-wika压力变送器-德国wika代理-威卡总代-北京博朗宁科技 | 气象监测系统_气象传感器_微型气象仪_气象环境监测仪-山东风途物联网 | 无锡门窗-系统门窗-阳光房-封阳台-断桥铝门窗厂[窗致美] | EFM 022静电场测试仪-套帽式风量计-静电平板监测器-上海民仪电子有限公司 | 生物除臭剂-除味剂-植物-污水除臭剂厂家-携葵环保有限公司 | 厦门ISO认证|厦门ISO9001认证|厦门ISO14001认证|厦门ISO45001认证-艾索咨询专注ISO认证行业 | 实验室隔膜泵-无油防腐蚀隔膜泵-耐腐蚀隔膜真空泵-杭州景程仪器 电杆荷载挠度测试仪-电杆荷载位移-管桩测试仪-北京绿野创能机电设备有限公司 | 小型玉石雕刻机_家用玉雕机_小型万能雕刻机_凡刻雕刻机官网 | 超声波电磁流量计-液位计-孔板流量计-料位计-江苏信仪自动化仪表有限公司 | 称重传感器,测力传感器,拉压力传感器,压力变送器,扭矩传感器,南京凯基特电气有限公司 | 拉曼光谱仪_便携式|激光|显微共焦拉曼光谱仪-北京卓立汉光仪器有限公司 | 周口风机|周风风机|河南省周口通用风机厂 |