-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
博文視點AI系列深度學習之PYTORCH實戰計算機視覺 版權信息
- ISBN:9787121341441
- 條形碼:9787121341441 ; 978-7-121-34144-1
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
博文視點AI系列深度學習之PYTORCH實戰計算機視覺 本書特色
計算機視覺、自然語言處理和語音識別是目前深度學習領域很熱門的三大應用方向,本書旨在幫助零基礎或基礎較為薄弱的讀者入門深度學習,達到能夠獨立使用深度學習知識處理計算機視覺問題的水平。通過閱讀本書,讀者將學到人工智能的基礎概念及Python編程技能,掌握PyTorch的使用方法,學到深度學習相關的理論知識,比如卷積神經網絡、循環神經網絡、自動編碼器,等等。在掌握深度學習理論和編程技能之后,讀者還會學到如何基于PyTorch深度學習框架實戰計算機視覺。本書中的大量實例可讓讀者在循序漸進地學習的同時,不斷地獲得成就感。本書面向對深度學習技術感興趣、但是相關基礎知識較為薄弱或者零基礎的讀者。
博文視點AI系列深度學習之PYTORCH實戰計算機視覺 內容簡介
計算機視覺、自然語言處理和語音識別是目前深度學習領域很熱門的三大應用方向,本書旨在幫助零基礎或基礎較為薄弱的讀者入門深度學習,達到能夠獨立使用深度學習知識處理計算機視覺問題的水平。通過閱讀本書,讀者將學到人工智能的基礎概念及Python編程技能,掌握PyTorch的使用方法,學到深度學習相關的理論知識,比如卷積神經網絡、循環神經網絡、自動編碼器,等等。在掌握深度學習理論和編程技能之后,讀者還會學到如何基于PyTorch深度學習框架實戰計算機視覺。本書中的大量實例可讓讀者在循序漸進地學習的同時,不斷地獲得成就感。本書面向對深度學習技術感興趣、但是相關基礎知識較為薄弱或者零基礎的讀者。
博文視點AI系列深度學習之PYTORCH實戰計算機視覺 目錄
第1章 淺談人工智能、神經網絡和計算機視覺 1
1.1 人工還是智能 1
1.2 人工智能的三起兩落 2
1.2.1 兩起兩落 2
1.2.2 卷土重來 3
1.3 神經網絡簡史 5
1.3.1 生物神經網絡和人工神經網絡 5
1.3.2 M-P模型 6
1.3.3 感知機的誕生 9
1.3.4 你好,深度學習 10
1.4 計算機視覺 11
1.5 深度學習 12
1.5.1 圖片分類 12
1.5.2 圖像的目標識別和語義分割 13
1.5.3 自動駕駛 13
1.5.4 圖像風格遷移 14
第2章 相關的數學知識 15
2.1 矩陣運算入門 15
2.1.1 標量、向量、矩陣和張量 15
2.1.2 矩陣的轉置 17
2.1.3 矩陣的基本運算 18
2.2 導數求解 22
2.2.1 一階導數的幾何意義 23
2.2.2 初等函數的求導公式 24
2.2.3 初等函數的和、差、積、商求導 26
2.2.4 復合函數的鏈式法則 27
第3章 深度神經網絡基礎 29
3.1 監督學習和無監督學習 29
3.1.1 監督學習 30
3.1.2 無監督學習 32
3.1.3 小結 33
3.2 欠擬合和過擬合 34
3.2.1 欠擬合 34
3.2.2 過擬合 35
3.3 后向傳播 36
3.4 損失和優化 38
3.4.1 損失函數 38
3.4.2 優化函數 39
3.5 激活函數 42
3.5.1 Sigmoid 44
3.5.2 tanh 45
3.5.3 ReLU 46
3.6 本地深度學習工作站 47
3.6.1 GPU和CPU 47
3.6.2 配置建議 49
第4章 卷積神經網絡 51
4.1 卷積神經網絡基礎 51
4.1.1 卷積層 51
4.1.2 池化層 54
4.1.3 全連接層 56
4.2 LeNet模型 57
4.3 AlexNet模型 59
4.4 VGGNet模型 61
4.5 GoogleNet 65
4.6 ResNet 69
第5章 Python基礎 72
5.1 Python簡介 72
5.2 Jupyter Notebook 73
5.2.1 Anaconda的安裝與使用 73
5.2.2 環境管理 76
5.2.3 環境包管理 77
5.2.4 Jupyter Notebook的安裝 79
5.2.5 Jupyter Notebook的使用 80
5.2.6 Jupyter Notebook常用的快捷鍵 86
5.3 Python入門 88
5.3.1 Python的基本語法 88
5.3.2 Python變量 92
5.3.3 常用的數據類型 94
5.3.4 Python運算 99
5.3.5 Python條件判斷語句 107
5.3.6 Python循環語句 109
5.3.7 Python中的函數 113
5.3.8 Python中的類 116
5.4 Python中的NumPy 119
5.4.1 NumPy的安裝 119
5.4.2 多維數組 119
5.4.3 多維數組的基本操作 125
5.5 Python中的Matplotlib 133
5.5.1 Matplotlib的安裝 133
5.5.2 創建圖 133
第6章 PyTorch基礎 142
6.1 PyTorch中的Tensor 142
6.1.1 Tensor的數據類型 143
6.1.2 Tensor的運算 146
6.1.3 搭建一個簡易神經網絡 153
6.2 自動梯度 156
6.2.1 torch.autograd和Variable 156
6.2.2 自定義傳播函數 159
6.3 模型搭建和參數優化 162
6.3.1 PyTorch之torch.nn 162
6.3.2 PyTorch之torch.optim 167
6.4 實戰手寫數字識別 169
6.4.1 torch和torchvision 170
6.4.2 PyTorch之torch.transforms 171
6.4.3 數據預覽和數據裝載 173
6.4.4 模型搭建和參數優化 174
第7章 遷移學習 180
7.1 遷移學習入門 180
7.2 數據集處理 181
7.2.1 驗證數據集和測試數據集 182
7.2.2 數據預覽 182
7.3 模型搭建和參數優化 185
7.3.1 自定義VGGNet 185
7.3.2 遷移VGG16 196
7.3.3 遷移ResNet50 203
7.4 小結 219
第8章 圖像風格遷移實戰 220
8.1 風格遷移入門 220
8.2 PyTorch圖像風格遷移實戰 222
8.2.1 圖像的內容損失 222
8.2.2 圖像的風格損失 223
8.2.3 模型搭建和參數優化 224
8.2.4 訓練新定義的卷積神經網絡 226
8.3 小結 232
第9章 多模型融合 233
9.1 多模型融合入門 233
9.1.1 結果多數表決 234
9.1.2 結果直接平均 236
9.1.3 結果加權平均 237
9.2 PyTorch之多模型融合實戰 239
9.3 小結 246
第10章 循環神經網絡 247
10.1 循環神經網絡入門 247
10.2 PyTorch之循環神經網絡實戰 249
10.3 小結 257
第11章 自動編碼器 258
11.1 自動編碼器入門 258
11.2 PyTorch之自動編碼實戰 259
11.2.1 通過線性變換實現自動編碼器模型 260
11.2.2 通過卷積變換實現自動編碼器模型 267
11.3 小結 273
博文視點AI系列深度學習之PYTORCH實戰計算機視覺 作者簡介
唐進民,深入理解深度學習與計算機視覺知識體系,有扎實的PyTorch、Python和數學功底。長期活躍于Github、知乎等平臺并分享與深度學習相關的文章,具有一定的閱讀量和人氣。此前還在某AI網絡教育平臺兼職Mentor,輔導新學員入門機器學習和深度學習。
- >
唐代進士錄
- >
中國歷史的瞬間
- >
龍榆生:詞曲概論/大家小書
- >
人文閱讀與收藏·良友文學叢書:一天的工作
- >
煙與鏡
- >
上帝之肋:男人的真實旅程
- >
伯納黛特,你要去哪(2021新版)
- >
【精裝繪本】畫給孩子的中國神話