中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
Python 數據科學手冊

包郵 Python 數據科學手冊

出版社:人民郵電出版社出版時間:2018-02-01
開本: 32開 頁數: 448
中 圖 價:¥65.3(6.0折) 定價  ¥109.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

Python 數據科學手冊 版權信息

  • ISBN:9787115475893
  • 條形碼:9787115475893 ; 978-7-115-47589-3
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>>

Python 數據科學手冊 本書特色

《Python數據科學手冊》是對以數據深度需求為中心的科學、研究以及針對計算和統計方法的參考書。本書共五章,每章介紹一到兩個Python數據科學中的重點工具包。首先從IPython和Jupyter開始,它們提供了數據科學家需要的計算環境;第 2章講解能提供ndarray對象的NumPy,它可以用Python高效地存儲和操作大型數組;第3章主要涉及提供DataFrame對象的Pandas,它可以用Python高效地存儲和操作帶標簽的/列式數據;第4章的主角是Matplotlib,它為Python提供了許多數據可視化功能;第5章以Scikit-Learn為主,這個程序庫為重要的機器學習算法提供了高效整潔的Python版實現。 《Python數據科學手冊》適合有編程背景,并打算將開源Python工具用作分析、操作、可視化以及學習數據的數據科學研究人員。

Python 數據科學手冊 內容簡介

Python語言擁有大量可用于存儲、操作和洞察數據的程序庫,已然成為深受數據科學研究人員推崇的工具。本書以IPython、NumPy、Pandas、Matplotlib和Scikit-Learn這5個能完成數據科學大部分工作的基礎工具為主,從實戰角度出發,講授如何清洗和可視化數據、如何用數據建立各種統計學或機器學習模型等常見數據科學任務,旨在讓各領域與數據處理相關的工作人員具備發現問題、解決問題的能力。 ·IPython和Jupyter:為使用Python提供計算環境 ·NumPy:用ndarray實現高維數組的高效存儲與操作 ·Pandas:用DataFrame實現帶標簽/列式數據的高效存儲與操作 ·Matplotlib:實現各種數據可視化 ·Scikit-Learn:用高效整潔的Python實現重要的機器學習算法

Python 數據科學手冊 目錄

譯者序 xiii

前言 xv

第 1 章 IPython:超越Python 1

1.1 shell還是Notebook 1

1.1.1 啟動IPython shell 2

1.1.2 啟動Jupyter Notebook 2

1.2 IPython的幫助和文檔 3

1.2.1 用符號 獲取文檔 3

1.2.2 通過符號 獲取源代碼 4

1.2.3 用Tab補全的方式探索模塊 5

1.3 IPython shell中的快捷鍵 7

1.3.1 導航快捷鍵 7

1.3.2 文本輸入快捷鍵 7

1.3.3 命令歷史快捷鍵 8

1.3.4 其他快捷鍵 9

1.4 IPython魔法命令 9

1.4.1 粘貼代碼塊:%paste和%cpaste 9

1.4.2 執行外部代碼:%run 10

1.4.3 計算代碼運行時間:%timeit 11

1.4.4 魔法函數的幫助: 、%magic 和%lsmagic 11

1.5 輸入和輸出歷史 12

1.5.1 IPython的輸入和輸出對象 12

1.5.2 下劃線快捷鍵和以前的輸出 13

1.5.3 禁止輸出 13

1.5.4 相關的魔法命令 13

1.6 IPython和shell命令 14

1.6.1 shell快速入門 14

1.6.2 IPython中的shell命令 15

1.6.3 在shell中傳入或傳出值 15

1.7 與shell相關的魔法命令 16

1.8 錯誤和調試 17

1.8.1 控制異常:%xmode 17

1.8.2 調試:當閱讀軌跡追溯不足以解決問題時 19

1.9 代碼的分析和計時 21

1.9.1 代碼段計時:%timeit和%time 22

1.9.2 分析整個腳本:%prun 23

1.9.3 用%lprun進行逐行分析 24

1.9.4 用%memit和%mprun進行內存分析 25

1.10 IPython參考資料 26

1.10.1 網絡資源 26

1.10.2 相關圖書 27

第 2 章 NumPy入門 28

2.1 理解Python中的數據類型 29

2.1.1 Python整型不僅僅是一個整型 30

2.1.2 Python列表不僅僅是一個列表 31

2.1.3 Python中的固定類型數組 32

2.1.4 從Python列表創建數組 32

2.1.5 從頭創建數組 33

2.1.6 NumPy標準數據類型 34

2.2 NumPy數組基礎 35

2.2.1 NumPy數組的屬性 36

2.2.2 數組索引:獲取單個元素 37

2.2.3 數組切片:獲取子數組 38

2.2.4 數組的變形 41

2.2.5 數組拼接和分裂 42

2.3 NumPy數組的計算:通用函數 44

2.3.1 緩慢的循環 44

2.3.2 通用函數介紹 45

2.3.3 探索NumPy的通用函數 46

2.3.4 通用函數特性 49

2.3.5 通用函數:更多的信息 51

2.4 聚合:*小值、*大值和其他值 51

2.4.1 數組值求和 51

2.4.2 *小值和*大值 52

2.4.3 示例:美國總統的身高是多少 54

2.5 數組的計算:廣播 55

2.5.1 廣播的介紹 55

2.5.2 廣播的規則 57

2.5.3 廣播的實際應用 60

2.6 比較、掩碼和布爾邏輯 61

2.6.1 示例:統計下雨天數 61

2.6.2 和通用函數類似的比較操作 62

2.6.3 操作布爾數組 64

2.6.4 將布爾數組作為掩碼 66

2.7 花哨的索引 69

2.7.1 探索花哨的索引 69

2.7.2 組合索引 70

2.7.3 示例:選擇隨機點 71

2.7.4 用花哨的索引修改值 72

2.7.5 示例:數據區間劃分 73

2.8 數組的排序 75

2.8.1 NumPy中的快速排序:np.sort和np.argsort 76

2.8.2 部分排序:分隔 77

2.8.3 示例:K個*近鄰 78

2.9 結構化數據:NumPy的結構化數組 81

2.9.1 生成結構化數組 83

2.9.2 更高 級的復合類型 84

2.9.3 記錄數組:結構化數組的扭轉 84

2.9.4 關于Pandas 85

第3 章 Pandas數據處理 86

3.1 安裝并使用Pandas 86

3.2 Pandas對象簡介 87

3.2.1 Pandas的Series對象 87

3.2.2 Pandas的DataFrame對象 90

3.2.3 Pandas的Index對象 93

3.3 數據取值與選擇 95

3.3.1 Series數據選擇方法 95

3.3.2 DataFrame數據選擇方法 98

3.4 Pandas數值運算方法 102

3.4.1 通用函數:保留索引 102

3.4.2 通用函數:索引對齊 103

3.4.3 通用函數:DataFrame與Series的運算 105

3.5 處理缺失值 106

3.5.1 選擇處理缺失值的方法 106

3.5.2 Pandas的缺失值 107

3.5.3 處理缺失值 110

3.6 層級索引 113

3.6.1 多級索引Series 113

3.6.2 多級索引的創建方法 116

3.6.3 多級索引的取值與切片 119

3.6.4 多級索引行列轉換 121

3.6.5 多級索引的數據累計方法 124

3.7 合并數據集:Concat與Append操作 125

3.7.1 知識回顧:NumPy數組的合并 126

3.7.2 通過pd.concat實現簡易合并 126

3.8 合并數據集:合并與連接 129

3.8.1 關系代數 129

3.8.2 數據連接的類型 130

3.8.3 設置數據合并的鍵 132

3.8.4 設置數據連接的集合操作規則 134

3.8.5 重復列名:suffixes參數 135

3.8.6 案例:美國各州的統計數據 136

3.9 累計與分組 140

3.9.1 行星數據 140

3.9.2 Pandas的簡單累計功能 141

3.9.3 GroupBy:分割、應用和組合 142

3.10 數據透視表 150

3.10.1 演示數據透視表 150

3.10.2 手工制作數據透視表 151

3.10.3 數據透視表語法 151

3.10.4 案例:美國人的生日 153

3.11 向量化字符串操作 157

3.11.1 Pandas字符串操作簡介 157

3.11.2 Pandas字符串方法列表 159

3.11.3 案例:食譜數據庫 163

3.12 處理時間序列 166

3.12.1 Python的日期與時間工具 166

3.12.2 Pandas時間序列:用時間作索引 169

3.12.3 Pandas時間序列數據結構 170

3.12.4 時間頻率與偏移量 172

3.12.5 重新取樣、遷移和窗口 173

3.12.6 更多學習資料 178

3.12.7 案例:美國西雅圖自行車統計數據的可視化 179

3.13 高性能Pandas:eval()與query() 184

3.13.1 query()與eval()的設計動機:復合代數式 184

3.13.2 用pandas.eval()實現高性能運算 185

3.13.3 用DataFrame.eval()實現列間運算 187

3.13.4 DataFrame.query()方法 188

3.13.5 性能決定使用時機 189

3.14 參考資料 189

第4 章 Matplotlib數據可視化 191

4.1 Matplotlib常用技巧 192

4.1.1 導入Matplotlib 192

4.1.2 設置繪圖樣式 192

4.1.3 用不用show()?如何顯示圖形 192

4.1.4 將圖形保存為文件 194

4.2 兩種畫圖接口 195

4.2.1 MATLAB風格接口 195

4.2.2 面向對象接口 196

4.3 簡易線形圖 197

4.3.1 調整圖形:線條的顏色與風格 199

4.3.2 調整圖形:坐標軸上下限 200

4.3.3 設置圖形標簽 203

4.4 簡易散點圖 204

4.4.1 用plt.plot畫散點圖 205

4.4.2 用plt.scatter畫散點圖 206

4.4.3 plot與scatter:效率對比 208

4.5 可視化異常處理 208

4.5.1 基本誤差線 209

4.5.2 連續誤差 210

4.6 密度圖與等高線圖 211

4.7 頻次直方圖、數據區間劃分和分布密度 215

4.8 配置圖例 219

4.8.1 選擇圖例顯示的元素 221

4.8.2 在圖例中顯示不同尺寸的點 222

4.8.3 同時顯示多個圖例 223

4.9 配置顏色條 224

4.9.1 配置顏色條 224

4.9.2 案例:手寫數字 228

4.10 多子圖 230

4.10.1 plt.axes:手動創建子圖 230

4.10.2 plt.subplot:簡易網格子圖 231

4.10.3 plt.subplots:用一行代碼創建網格 233

4.10.4 plt.GridSpec:實現更復雜的排列方式 234

4.11 文字與注釋 235

4.11.1 案例:節假日對美國出生率的影響 236

4.11.2 坐標變換與文字位置 237

4.11.3 箭頭與注釋 239

4.12 自定義坐標軸刻度 241

4.12.1 主要刻度與次要刻度 242

4.12.2 隱藏刻度與標簽 243

4.12.3 增減刻度數量 244

4.12.4 花哨的刻度格式 245

4.12.5 格式生成器與定位器小結 247

4.13 Matplotlib自定義:配置文件與樣式表 248

4.13.1 手動配置圖形 248

4.13.2 修改默認配置:rcParams 249

4.13.3 樣式表 251

4.14 用Matplotlib畫三維圖 255

4.14.1 三維數據點與線 256

4.14.2 三維等高線圖 256

4.14.3 線框圖和曲面圖 258

4.14.4 曲面三角剖分 259

4.15 用Basemap可視化地理數據 261

4.15.1 地圖投影 263

4.15.2 畫一個地圖背景 267

4.15.3 在地圖上畫數據 269

4.15.4 案例:美國加州城市數據 270

4.15.5 案例:地表溫度數據 271

4.16 用Seaborn做數據可視化 273

4.16.1 Seaborn與Matplotlib 274

4.16.2 Seaborn圖形介紹 275

4.16.3 案例:探索馬拉松比賽成績數據 283

4.17 參考資料 290

4.17.1 Matplotlib資源 290

4.17.2 其他Python畫圖程序庫 290

第5 章 機器學習 291

5.1 什么是機器學習 291

5.1.1 機器學習的分類 292

5.1.2 機器學習應用的定性示例 292

5.1.3 小結 299

5.2 Scikit-Learn簡介 300

5.2.1 Scikit-Learn的數據表示 300

5.2.2 Scikit-Learn的評估器API 302

5.2.3 應用:手寫數字探索 309

5.2.4 小結 313

5.3 超參數與模型驗證 313

5.3.1 什么是模型驗證 314

5.3.2 選擇模型 317

5.3.3 學習曲線 322

5.3.4 驗證實踐:網格搜索 326

5.3.5 小結 327

5.4 特征工程 327

5.4.1 分類特征 327

5.4.2 文本特征 329

5.4.3 圖像特征 330

5.4.4 衍生特征 330

5.4.5 缺失值填充 332

5.4.6 特征管道 332

5.5 專題:樸素貝葉斯分類 333

5.5.1 貝葉斯分類 333

5.5.2 高斯樸素貝葉斯 334

5.5.3 多項式樸素貝葉斯 336

5.5.4 樸素貝葉斯的應用場景 339

5.6 專題:線性回歸 340

5.6.1 簡單線性回歸 340

5.6.2 基函數回歸 342

5.6.3 正則化 346

5.6.4 案例:預測自行車流量 349

5.7 專題:支持向量機 353

5.7.1 支持向量機的由來 354

5.7.2 支持向量機:邊界*大化 355

5.7.3 案例:人臉識別 363

5.7.4 支持向量機總結 366

5.8 專題:決策樹與隨機森林 367

5.8.1 隨機森林的誘因:決策樹 367

5.8.2 評估器集成算法:隨機森林 371

5.8.3 隨機森林回歸 373

5.8.4 案例:用隨機森林識別手寫數字 374

5.8.5 隨機森林總結 376

5.9 專題:主成分分析 376

5.9.1 主成分分析簡介 377

5.9.2 用PCA作噪音過濾 383

5.9.3 案例:特征臉 385

5.9.4 主成分分析總結 387

5.10 專題:流形學習 388

5.10.1 流形學習:“HELLO” 388

5.10.2 多維標度法(MDS) 389

5.10.3 將MDS用于流形學習 391

5.10.4 非線性嵌入:當MDS失敗時 393

5.10.5 非線性流形:局部線性嵌入 395

5.10.6 關于流形方法的一些思考 396

5.10.7 示例:用Isomap 處理人臉數據 397

5.10.8 示例:手寫數字的可視化結構 400

5.11 專題:k-means聚類 402

5.11.1 k-means簡介 403

5.11.2 k-means算法:期望*大化 404

5.11.3 案例 409

5.12 專題:高斯混合模型 415

5.12.1 高斯混合模型(GMM)為什么會出現:k-means算法

的缺陷 415

5.12.2 一般化E-M:高斯混合模型 417

5.12.3 將GMM用作密度估計 421

5.12.4 示例:用GMM生成新的數據 425

5.13 專題:核密度估計 427

5.13.1 KDE的由來:直方圖 428

5.13.2 核密度估計的實際應用 431

5.13.3 示例:球形空間的KDE 433

5.13.4 示例:不是很樸素的貝葉斯 436

5.14 應用:人臉識別管道 439

5.14.1 HOG特征 440

5.14.2 HOG實戰:簡單人臉識別器 441

5.14.3 注意事項與改進方案 445

5.15 機器學習參考資料 446

5.15.1 Python中的機器學習 446

5.15.2 通用機器學習資源 447

關于作者 448

關于封面 448
展開全部

Python 數據科學手冊 作者簡介

Jake VanderPlas是Python科學棧的深度用戶和開發人員,目前是華盛頓大學eScience學院物理科學研究院院長,研究方向為天文學。同時,他還為很多領域的科學家提供建議和咨詢。

商品評論(0條)
暫無評論……
書友推薦
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 钣金加工厂家-钣金加工-佛山钣金厂-月汇好 | 高光谱相机-近红外高光谱相机厂家-高光谱成像仪-SINESPEC 赛斯拜克 | 大流量卧式砂磨机_强力分散机_双行星双动力混合机_同心双轴搅拌机-莱州市龙跃化工机械有限公司 | 丽陂特官网_手机信号屏蔽器_Wifi信号干扰器厂家_学校考场工厂会议室屏蔽仪 | 单级/双级旋片式真空泵厂家,2xz旋片真空泵-浙江台州求精真空泵有限公司 | 碳钢法兰厂家,非标法兰,定制异型,法兰生产厂家-河北九瑞管道 | 山楂片_雪花_迷你山楂片_山楂条饼厂家-青州市丰源食品厂 | 贝朗斯动力商城(BRCPOWER.COM) - 买叉车蓄电池上贝朗斯商城,价格更超值,品质有保障! | 盘装氧量分析仪-防爆壁挂氧化锆分析仪-安徽吉帆仪表有限公司 | 螺旋叶片_螺旋叶片成型机_绞龙叶片_莱州源泽机械制造有限公司 | 深圳离婚律师咨询「在线免费」华荣深圳婚姻律师事务所专办离婚纠纷案件 | 制氮设备-变压吸附制氮设备-制氧设备-杭州聚贤气体设备制造有限公司 | YT保温材料_YT无机保温砂浆_外墙保温材料_南阳银通节能建材高新技术开发有限公司 | 全屋整木定制-橱柜,家具定制-四川峨眉山龙马木业有限公司 | 高低温万能试验机_拉力试验机_拉伸试验机-馥勒仪器科技(上海)有限公司 | 厂厂乐-汇聚海量采购信息的B2B微营销平台-厂厂乐官网 | 杭州成人高考_浙江省成人高考网上报名 | 精密机械零件加工_CNC加工_精密加工_数控车床加工_精密机械加工_机械零部件加工厂 | 超声波乳化机-超声波分散机|仪-超声波萃取仪-超声波均质机-精浩机械|首页 | 超声波流量计_流量标准装置生产厂家 _河南盛天精密测控 | 冷藏车厂家|冷藏车价格|小型冷藏车|散装饲料车厂家|程力专用汽车股份有限公司销售十二分公司 | 三价铬_环保铬_环保电镀_东莞共盈新材料贸易有限公司 | 专业的新乡振动筛厂家-振动筛品质保障-环保振动筛价格—新乡市德科筛分机械有限公司 | 中式装修设计_室内中式装修_【云臻轩】中式设计机构 | 贵州自考_贵州自学考试网| RFID电子标签厂家-上海尼太普电子有限公司 | 活性氧化铝|无烟煤滤料|活性氧化铝厂家|锰砂滤料厂家-河南新泰净水材料有限公司 | 游泳池设备安装工程_恒温泳池设备_儿童游泳池设备厂家_游泳池水处理设备-东莞市君达泳池设备有限公司 | 圆形振动筛_圆筛_旋振筛_三次元振动筛-河南新乡德诚生产厂家 | 数控专用机床,专用机床,自动线,组合机床,动力头,自动化加工生产线,江苏海鑫机床有限公司 | 塑料撕碎机_编织袋撕碎机_废纸撕碎机_生活垃圾撕碎机_废铁破碎机_河南鑫世昌机械制造有限公司 | 东莞螺丝|东莞螺丝厂|东莞不锈钢螺丝|东莞组合螺丝|东莞精密螺丝厂家-东莞利浩五金专业紧固件厂家 | 冷却塔降噪隔音_冷却塔噪声治理_冷却塔噪音处理厂家-广东康明冷却塔降噪厂家 | 大白菜官网,大白菜winpe,大白菜U盘装系统, u盘启动盘制作工具 | 成都顶呱呱信息技术有限公司-贷款_个人贷款_银行贷款在线申请 - 成都贷款公司 | 一体化净水器_一体化净水设备_一体化水处理设备-江苏旭浩鑫环保科技有限公司 | 溶氧传感器-pH传感器|哈美顿(hamilton) | 聚合氯化铝价格_聚合氯化铝厂家_pac絮凝剂-唐达净水官网 | 披萨石_披萨盘_电器家电隔热绵加工定制_佛山市南海区西樵南方综合保温材料厂 | b2b网站大全,b2b网站排名,找b2b网站就上地球网 | 钢绞线万能材料试验机-全自动恒应力两用机-混凝土恒应力压力试验机-北京科达京威科技发展有限公司 |