中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊

包郵 數據科學原理

出版社:東南大學出版社出版時間:2017-10-01
開本: 24cm 頁數: 12,369頁
中 圖 價:¥32.3(3.5折) 定價  ¥92.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
溫馨提示:5折以下圖書主要為出版社尾貨,大部分為全新(有塑封/無塑封),個別圖書品相8-9成新、切口
有劃線標記、光盤等附件不全詳細品相說明>>
本類五星書更多>

數據科學原理 版權信息

數據科學原理 本書特色

本書旨在幫助你將數學、編程和商業分析這三者融會貫通。有了這本書,在面對復雜的問題時,無論是抽象和原始的數據統計,還是可實施的理念,你都會充滿自信。我們采用了一種獨特的方法來建立起數學和計算機科學之間的橋梁,你會在這次令人興奮的學習之旅中成長為一名數據科學家。從清洗和準備數據開始,然后到給出有效的數據挖掘策略和技術,你會經歷數據科學的整個流程,建立起數據科學的各個組成部分是如何相互協作的宏觀概念,學習基本的數學和統計學知識以及一些目前由數據科學家和分析師用到的偽代碼。除此之外,你還將掌握機器學習,了解一些有用的統計模型,這些模型能夠幫助你控制和處理很密集的數據集,學會如何創建出能股表達數據意圖的可視化方法。

數據科學原理 內容簡介

本書旨在幫助你將數學、編程和商業分析這三者融會貫通。有了這本書,在面對復雜的問題時,無論是抽象和原始的數據統計,還是可實施的理念,你都會充滿自信。我們采用了一種獨特的方法來建立起數學和計算機科學之間的橋梁,你會在這次令人興奮的學習之旅中成長為一名數據科學家。從清洗和準備數據開始,然后到給出有效的數據挖掘策略和技術,你會經歷數據科學的整個流程,建立起數據科學的各個組成部分是如何相互協作的宏觀概念,學習基本的數學和統計學知識以及一些目前由數據科學家和分析師用到的偽代碼。除此之外,你還將掌握機器學習,了解一些有用的統計模型,這些模型能夠幫助你控制和處理很密集的數據集,學會如何創建出能股表達數據意圖的可視化方法。

數據科學原理 目錄

PrefaceChapter 1: How to Sound Like a Data Scientist What is data science? Basic terminology Why data science? Example - Sigma Technologies The data science Venn diagram The math Example - spawner-recruit models Computer programming Why Python? Python practices Example of basic Python Domain knowledge Some more terminology Data science case studies Case study - automating government paper pushing Fire all humans, right? Case study - marketing dollars Case study - what's in a job description? SummaryChapter 2: Types of Data Flavors of data Why look at these distinctions? Structured versus unstructured data Example of data preprocessing Word/phrase counts Presence of certain special characters Relative length of text Picking out topics Quantitative versus qualitative data Example - coffee shop data Example - world alcohol consumption data Digging deeper The road thus far The four levels of data The nominal level Mathematical operations allowed Measures of center What data is like at the nominal level The ordinal level Examples Mathematical operations allowed Measures of center Quick recap and check The interval level Example Mathematical operations allowed Measures of center Measures of variation The ratio level Examples Measures of center Problems with the ratio level Data is in the eye of the beholder SummaryChapter 3: The Five Steps of Data Science Introduction to Data Science Overview of the five steps Ask an interesting question Obtain the data Explore the data Model the data Communicate and visualize the results Explore the data Basic questions for data exploration Dataset 1 - Yelp Dataframes Series Exploration tips for qualitative data Dataset 2 - titanic SummaryChapter 4: Basic Mathematics Mathematics as a discipline Basic symbols and terminology Vectors and matrices Quick exercises Answers Arithmetic symbols Summation Proportional Dot product Graphs Logarithms/exponents Set theory Linear algebra Matrix multiplication How to multiply matrices SummaryChapter 5: Impossible or Improbable - A Gentle Introduction to Probability Basic definitions Probability Bayesian versus Frequentist Frequentist approach The law of large numbers Compound events Conditional probability The rules of probability The addition rule Mutual exclusivity The multiplication rule Independence Complementary events A bit deeper SummaryChapter 6: Advanced Probability Collectively exhaustive events Bayesian ideas revisited Bayes theorem More applications of Bayes theorem Example - Titanic Example - medical studies Random variables Discrete random variables Types of discrete random variables SummaryChapter 7: Basic Statistics What are statistics? How do we obtain and sample data? Obtaining data Observational Experimental Sampling data Probability sampling Random sampling Unequal probability sampling How do we measure statistics? Measures of center Measures of variation Definition Example - employee salaries Measures of relative standing The insightful part - correlations in data The Empirical rule SummaryChapter 8: Advanced Statistics Point estimates Sampling distributions Confidence intervals Hypothesis tests Conducting a hypothesis test One sample t-tests Example of a one sample t-tests Assumptions of the one sample t-tests Type I and type II errors Hypothesis test for categorical variables Chi-square goodness of fit test Chi-square test for association/independence SummaryChapter 9: Communicating Data Why does communication matter? Identifying effective and ineffective visualizations Scatter plots Line graphs Bar charts Histograms Box plots When graphs and statistics lie Correlation versus causation Simpson's paradox If correlation doesn't imply causation, then what does? Verbal communication It's about telling a story On the more formal side of things The whylhowlwhat strategy of presenting SummaryChapter 10: How to Tell If Your Toaster Is Learning - Machine Learning Essentials What is machine learning? Machine learning isn't perfect How does machine learning work? Types of machine learning Supervised learning It's not only about predictions Types of supervised learning Data is in the eyes of the beholder Unsupervised learning Reinforcement learning Overview of the types of machine learning How does statistical modeling fit into all of this? Linear regression Adding more predictors Regression metrics Logistic regression Probability, odds, and log odds The math of logistic regression Dummy variables SummaryChapter 11: Predictions Don't Grow on Trees - or Do They? Na'fve Bayes classification Decision trees How does a computer build a regression tree? How does a computer fit a classification tree? Unsupervised learning When to use unsupervised learning K-means clustering Illustrative example - data points Illustrative example - beer! Choosing an optimal number for K and cluster validation The Silhouette Coefficient Feature extraction and principal component analysis SummaryChapter 12: Beyond the Essentials The bias variance tradeoff Error due to bias Error due to variance Two extreme cases of bias/variance tradeoff Underfitting Overfitting How bias/variance play into error functions K folds cross-validation Grid searching Visualizing training error versus cross-validation error Ensembling techniques Random forests Comparing Random forests with decision trees Neural networks Basic structure SummaryChapter 13: Case Studies Case study 1 - predicting stock prices based on social media Text sentiment analysis Exploratory data analysis Regression route Classification route Going beyond with this example Case study 2 - why do some people cheat on their spouses? Case study 3 - using tensorflow Tensorflow and neural networks SummaryIndex
展開全部
商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 杭州公司变更法人-代理记账收费价格-公司注销代办_杭州福道财务管理咨询有限公司 | SF6环境监测系统-接地环流在线监测装置-瑟恩实业 | 爱佩恒温恒湿测试箱|高低温实验箱|高低温冲击试验箱|冷热冲击试验箱-您身边的模拟环境试验设备技术专家-合作热线:400-6727-800-广东爱佩试验设备有限公司 | 电动车头盔厂家_赠品头盔_安全帽批发_山东摩托车头盔—临沂承福头盔 | 武汉不干胶印刷_标签设计印刷_不干胶标签印刷厂 - 武汉不干胶标签印刷厂家 | 高通量组织研磨仪-多样品组织研磨仪-全自动组织研磨仪-研磨者科技(广州)有限公司 | 长春网站建设,五合一网站设计制作,免费优化推广-长春网站建设 | IPO咨询公司-IPO上市服务-细分市场研究-龙马咨询 | 吉林污水处理公司,长春工业污水处理设备,净水设备-长春易洁环保科技有限公司 | 脑钠肽-白介素4|白介素8试剂盒-研域(上海)化学试剂有限公司 | 北京发电车出租-发电机租赁公司-柴油发电机厂家 - 北京明旺盛安机电设备有限公司 | 粉末包装机,拆包机厂家,价格-上海强牛包装机械设备有限公司 | 丁基胶边来料加工,医用活塞边角料加工,异戊二烯橡胶边来料加工-河北盛唐橡胶制品有限公司 | 酒店品牌设计-酒店vi设计-酒店标识设计【国际级】VI策划公司 | 中药二氧化硫测定仪,食品二氧化硫测定仪|俊腾百科 | 办公室装修_上海办公室设计装修_时尚办公新主张-后街印象 | 软文发布-新闻发布推广平台-代写文章-网络广告营销-自助发稿公司媒介星 | 杭州实验室尾气处理_实验台_实验室家具_杭州秋叶实验设备有限公司 | 气动机械手-搬运机械手-气动助力机械手-山东精瑞自动化设备有限公司 | 中红外QCL激光器-其他连续-半导体连续激光器-筱晓光子 | 高压负荷开关-苏州雷尔沃电器有限公司 | 匀胶机旋涂仪-声扫显微镜-工业水浸超声-安赛斯(北京)科技有限公司 | 行吊_电动单梁起重机_双梁起重机_合肥起重机_厂家_合肥市神雕起重机械有限公司 | 专业深孔加工_东莞深孔钻加工_东莞深孔钻_东莞深孔加工_模具深孔钻加工厂-东莞市超耀实业有限公司 | 天津次氯酸钠酸钙溶液-天津氢氧化钠厂家-天津市辅仁化工有限公司 | 紧急切断阀_气动切断阀_不锈钢阀门_截止阀_球阀_蝶阀_闸阀-上海上兆阀门制造有限公司 | 原子吸收设备-国产分光光度计-光谱分光光度计-上海光谱仪器有限公司 | 钢格板_钢格栅_格栅板_钢格栅板 - 安平县鑫拓钢格栅板厂家 | 应急灯_消防应急灯_应急照明灯_应急灯厂家-大成智慧官网 | 气弹簧定制-气动杆-可控气弹簧-不锈钢阻尼器-工业气弹簧-可调节气弹簧厂家-常州巨腾气弹簧供应商 | 校园气象站_超声波气象站_农业气象站_雨量监测站_风途科技 | 脱硫搅拌器厂家-淄博友胜不锈钢搅拌器厂家 | 合肥弱电工程_安徽安防工程_智能化工程公司-合肥雷润 | 威实软件_软件定制开发_OA_OA办公系统_OA系统_办公自动化软件 | 全国冰箱|空调|洗衣机|热水器|燃气灶维修服务平台-百修家电 | 工作服定制,工作服定做,工作服厂家-卡珀职业服装(苏州)有限公司 | 河南15年专业网站建设制作设计,做网站就找郑州启凡网络公司 | 冲击式破碎机-冲击式制砂机-移动碎石机厂家_青州市富康机械有限公司 | 大型多片锯,圆木多片锯,方木多片锯,板材多片锯-祥富机械有限公司 | cnc精密加工_数控机械加工_非标平键定制生产厂家_扬州沃佳机械有限公司 | 球磨机 选矿球磨机 棒磨机 浮选机 分级机 选矿设备厂家 |