中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
基于語義的圖像檢索 版權信息
- ISBN:9787030494900
- 條形碼:9787030494900 ; 978-7-03-049490-0
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
基于語義的圖像檢索 內容簡介
《基于語義的圖像檢索(英文版)》針對基于高層語義的圖像檢索的關鍵技術環節進行了介紹和論述。主要內容:(1)基于語義的圖像檢索技術的研究背景,以及圖像特征提取,圖像相似度度量,圖像語義學習等各關鍵環節經典和現有算法的綜述介紹;(2)基于作者提出的一個基于區域的語義圖像檢索算法,闡述了如何實現基于語義的圖像檢索,如何提取有效的圖像數字特征,如何從圖像數字特征提取圖像語義,(3)將將所提出的基于語義的圖像檢索算法用于網絡圖像檢索的改進,描述了其應用價值。
基于語義的圖像檢索 目錄
PrefaceList of AbbreviationsChapter 1 Introduction1.1 Background1.1.1 The 'Semantic Gap1.1.2 Query by Keywords1.2 Objectives1.3 Contributions of this Book1.3.1 Identifying Existing Semantic Learning Techniques1.3.2 Designing Effective Feature Extraction Methods for Arbitrary-Shaped Regions\"1.3.3 High-Level Concept Learning Using Decision Tree1.3.4 Applying RBIR with Semantics to Web Image Search1.4 Organization of the BookChapter 2 Key Techniques in Semantic-Based Image Retrieval2.1 Introduction2.2 Techniques and Issues in Region-Based Image Retrieval2.2.1 Image Segmentation2.2.2 Low-Level Image Feature Extraction2.2.3 Similarity Measure2.2.4 Test Database and Performance Evaluation2.3 High-Level Image Semantic Learning Techniques2.3.1 Object-Ontology2.3.2 Machine Learning2.3.3 Relevance Feedback (RF)2.3.4 Semantic Template2.3.5 Fusion of Multiple Resources for Web Image Search2.3.6 Deep Learning2.3.7 Summary of Existing Techniques in Image Semantic Learning2.4 Research Problems Addressed in this BookChapter 3 Deriving Image Semantics from Color Features3.1 Introduction3.2 Region Color Feature Extraction and Semantic Color Naming3.2.1 Region Color Features3.2.2 Semantic Color Names3.3 Image Retrieval using Semantic Color Names3.3.1 RBIR with Semantic Color Names3.3.2 Feature Normalization3.3.3 Image Similarity Measure using EMD3.4 Results and Analysis3.4.1 Test Database and Performance Evaluation Model3.4.2 Comparison of Different Color Features3.4.3 Performance of the Proposed Color Naming Method3.4.4 Image Retrieval with Color Names, Region Color Features and GlobalColor Features3.5 Discussion and ConclusionsChapter 4 Effective Texture Feature Extraction from Arbitrary-Shaped Regions4.1 Introduction4.2 Deriving Texture Features from Arbitrary-Shaped Regions4.2.1 Projection onto Convex Set (POCS) Theory4.2.2 Extracting Region Texture Features Using POCS-ER4.2.3 Theoretical Analysis of POCS-ER4.2.4 Implementation of POCS-ER4.3 POCS-ER on Brodatz Textures4.3.1 Illustration of POCS-ER Process4.3.2 Performance of POCS-ER Measured by PSNR4.3.3 Performance of POCS-ER Measured by Retrieval Performance4.4 POCS-ER for Real-World Image Retrieval4.4.1 Experimental Setups4.4.2 Performance of Different Texture Feature Extraction Methods in RBIR...4.4.3 RBIR with Color, Texture, Color & Texture4.4.4 Comparison of Region Features and Global Features in Image Retrieval4.5 Conclusions and DiscussionChapter 5 Deriving High-Level Image Concepts Using Decision Tree Learning5.1 Introduction5.2 Decision Tree Learning5.2.1 Overview5.2.2 Decision Tree Induction for Image Semantic Learning5.3 The Proposed Decision Tree Induction Algorithm DT-ST5.3.1 Semantic Template Construction5.3.2 Image Feature Discretization5.3.3 Decision Tree Induction5.4 Results and Analysis5.4.1 Selection of Pre-pnming Threshold5.4.2 Pruning Unknowns5.4.3 Handling Queries with Concepts outside the Training Concept Set5.4.4 Comparison of DT-ST with ID3 and C4.55.5 Region-Based Image Retrieval with High-Level Semantics5.6 Discussion5.6.1 Scalability of DT-ST5.6.2 The Advantage of Image Retrieval with High-Level Concepts5.7 ConclusionsChapter 6 Application of Semantic-Based RBIR to Web Image Search6.1 Introduction6.2 The False Filtering Algorithm6.3 Results and Analysis6.3.1 Web Image Collection and Performance Evaluation6.3.2 Experimental Results6.4 Discussions6.4.1 Integration6.4.2 FF Response Time6.4.3 Scalability6.5 ConclusionsChapter 7 Conclusions and Future Work7.1 Conclusions of this Book7.2 Future Research DirectionsBibliographyAppendix A HSV Color Histogram and HSV-RGB ConversionAppendix B Tamura Texture FeaturesAppendix C lllustration of POCS-ER Process Using ZR and MPAppendix D Pre-pruning &Post-pruning in DT-ST
展開全部
書友推薦
- >
推拿
- >
史學評論
- >
經典常談
- >
我從未如此眷戀人間
- >
月亮與六便士
- >
莉莉和章魚
- >
李白與唐代文化
- >
上帝之肋:男人的真實旅程
本類暢銷