中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
高維數據統計學-方法.理論和應用 版權信息
- ISBN:9787519211677
- 條形碼:9787519211677 ; 978-7-5192-1167-7
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
高維數據統計學-方法.理論和應用 本書特色
peter bühlmann在ethz是高維統計、因果推斷方面的知名專家!陡呔S數據統計學》統計學的前沿之作。這本書所針對的高維數據,是理論研究的熱點,在實際中也有著廣泛的應用。這本書重點闡述了lasso和其他l1方法的變體,也有boosting等內容。
高維數據統計學-方法.理論和應用 內容簡介
Peter Bühlmann在ETHZ是高維統計、因果推斷方面的知名專家!陡呔S數據統計學》統計學的前沿之作。這本書所針對的高維數據,是理論研究的熱點,在實際中也有著廣泛的應用。這本書重點闡述了Lasso和其他L1方法的變體,也有boosting等內容。
高維數據統計學-方法.理論和應用 目錄
1 Introduction 1.1 The framework 1.2 The possibilities and challenges 1.3 About the book 1.3.1 Organization of the book 1.4 Some examples 1.4.1 Prediction and biomarker discovery in genomics2 Lasso for linear models 2.1 Organization of the chapter 2.2 Introduction and preliminaries 2.2.1 The Lasso estimator 2.3 Orthonormal design 2.4 Prediction 2.4.1 Practical aspects about the Lasso for prediction 2.4.2 Some results from asymptotic theory 2.5 Variable screening and -norms 2.5.1 Tuning parameter selection for variable screening 2.5.2 Motif regression for DNA binding sites 2.6 Variable selection 2.6.1 Neighborhood stability and irrepresentable condition 2.7 Key properties and corresponding assumptions: a summary 2.8 The adaptive Lasso: a two-stage procedure 2.8.1 An illustration: simulated data and motif regression 2.8.2 Orthonormal design 2.8.3 The adaptive Lasso: variable selection under weak conditions 2.8.4 Computation 2.8.5 Multi-step adaptive Lasso 2.8.6 Non-convex penalty functions 2.9 Thresholding the Lasso 2.10 The relaxed Lasso 2.11 Degrees of freedom of the Lasso 2.12 Path-following algorithms 2.12.1 Coordinatewise optimization and shooting algorithms 2.13 Elastic net: an extension Problems3 Generalized linear models and the Lasso 3.1 Organization of the chapter 3.2 Introduction and preliminaries 3.2.1 The Lasso estimator: penalizing the negative log-likelihood.
3.3 Important examples of generalized linear models 3.3.1 Binary response variable and logistic regression 3.3.2 Poisson regression 3.3.3 Multi-category response variable and multinomial distribution Problems4 The group Lasso 4.1 Organization of the chapter 4.2 Introduction and preliminaries 4.2.1 The group Lasso penalty 4.3 Factor variables as covariates 4.3.1 Prediction of splice sites in DNA sequences 4.4 Properties of the group Lasso for generalized linear models 4.5 The generalized group Lasso penalty 4.5.1 Groupwise prediction penalty and parametrization invariance 4.6 The adaptive group Lasso 4.7 Algorithms for the group Lasso 4.7.1 Block coordinate descent 4.7.2 Block coordinate gradient descent Problems5 Additive models and many smooth univariate functions 5.1 Organization of the chapter 5.2 Introduction and preliminaries 5.2.1 Penalized maximum likelihood for additive models 5.3 The sparsity-smoothness penalty 5.3.1 Orthogonal basis and diagonal smoothing matrices 5.3.2 Natural cubic splines and Sobolev spaces 5.3.3 Computation 5.4 A sparsity-smoothness penalty of group Lasso type 5.4.1 Computational algorithm 5.4.2 Alternative approaches 5.5 Numerical examples 5.5.1 Simulated example……
6 Theory for the lasso7 Variable selection with the lasso8 Theory for -penalty procedures9 Non-convex loss functions and -regularization10 Stable solutions11 P-values for linear models and beyond12 Boosting and greedy algorithms14 Probability and moment inequalitiesAuthor indexIndexReferences
展開全部
高維數據統計學-方法.理論和應用 作者簡介
Peter Bühlmann(P.布爾曼,瑞士),Sara van de Geer(S.馮.吉爾,瑞士)在ETHZ是高維統計、因果推斷方面的知名專家。《高維數據統計學》統計學的前沿之作。
書友推薦
- >
月亮與六便士
- >
中國人在烏蘇里邊疆區:歷史與人類學概述
- >
有舍有得是人生
- >
史學評論
- >
莉莉和章魚
- >
【精裝繪本】畫給孩子的中國神話
- >
我從未如此眷戀人間
- >
名家帶你讀魯迅:朝花夕拾
本類暢銷