-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
時滯動力學系統的分岔與混沌-(上冊) 版權信息
- ISBN:9787030449177
- 條形碼:9787030449177 ; 978-7-03-044917-7
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
時滯動力學系統的分岔與混沌-(上冊) 本書特色
時滯動力學系統廣泛存在于自然科學、工程和社會科學等諸多領域中。由廖曉峰、李傳東、郭松濤著的《時滯動力學系統的分岔與混沌(上)》介紹了研究時滯動力學系統分岔的基本方法,同時涵蓋目前研究的一些*近成果。本書從理論與數值模擬上系統地討論了時滯動力學系統,尤其是時滯神經網絡出現各種分岔及混沌產生的可能性,獲得了一些新的理論結果。分上、下兩冊,共7章,上冊包括研究時滯動力學系統hopf分岔的幾種方法、單個神經元時滯方程的分岔、兩個神經元時滯系統的分岔等內容。 本書可作為高等院校電子工程、計算機、控制理論與應用、應用數學等相關專業高年級本科生、研究生的教材和參考書,也可作為相關教師和科研人員的參考用書。
時滯動力學系統的分岔與混沌-(上冊) 內容簡介
《時滯動力學系統的分岔與混沌(上冊)》可作為高等院校電子工程、計算機、控制理論與應用、應用數學等相關專業高年級本科生、研究生的教材和參考書,也可作為相關教師和科研人員的參考用書。
時滯動力學系統的分岔與混沌-(上冊) 目錄
前言
第1章研究時滯動力學系統hopf分岔的幾種方法1
1.1時滯系統的hopf分岔:hassard方法1
1.1.1引言1
1.1.2理論與算法1
1.2泛函微分方程的平均法6
1.2.1引言6
1.2.2準備工作8
1.2.3基本的平均法定理10
1.2.4補充的定理和引理15
1.3多尺度方法19
1.3.1對o(1)的解23
1.3.2對o(ε)的解23
1.3.3對o(ε2)的解24
1.4poincaré-lindstedt方法24
1.4.1引言24
1.4.2準備工作及一些假設條件25
1.4.3方程的系統26
1.4.4漸近展式的形式計算28
1.4.5漸近有效性證明29
1.4.6主要定理及補充30
1.5頻域方法34
1.5.1引言34
1.5.2在時滯系統中退化分岔的條件35
1.5.3時滯反饋系統:一般情形39
1.6帶參數的時滯泛函微分方程的規范形式與應用于hopf分岔42
1.6.1帶參數的泛函微分方程的規范形式42
1.6.2應用于hopf分岔47
第2章單個神經元時滯方程的分岔54
2.1時滯神經網絡模型54
2.2單個時滯神經網絡模型55
2.2.1單個gopalsamy神經元系統的引入56
2.2.2gopalsamy模型的收斂性的充分必要條件57
2.2.3帶非線性激活函數的單時滯神經元系統的hopf分岔63
2.2.4一個典型時滯系統的hopf分岔67
2.2.5帶分布時滯gopalsamy神經元方程68
2.3具有反射對稱性的一階非線性時滯微分方程的分岔71
2.3.1引言71
2.3.2線性穩定性分析72
2.3.3時滯微分方程的中心流形縮減73
2.3.4takens-bogdanov分岔78
2.3.5具體例子81
2.3.6結論84
2.4純量時滯微方程的局部和全局hopf分岔85
2.4.1引言85
2.4.2局部行為85
2.4.3特征方程87
2.4.4hopf分岔和分岔方向89
2.4.5全局延拓94
2.4.6數值例子98
2.5帶兩個時滯的純量時滯微分方程101
2.5.1引言101
2.5.2局部穩定性分析102
2.5.3hopf分岔104
2.5.4hopf分岔的穩定性111
第3章兩個神經元時滯系統的分岔117
3.1兩個神經元時滯系統的穩定性與分岔117
3.1.1引言117
3.1.2線性穩定性分析117
3.1.3中心流形縮減121
3.2時滯誘導興奮與抑制神經系統的周期性126
3.2.1引言126
3.2.2時滯誘導系統失穩127
3.2.3時滯誘導周期振蕩129
3.2.4分岔周期解的穩定性135
3.3帶分布時滯的興奮與抑制神經系統的全局hopf分岔135
3.3.1引言135
3.3.2線性穩定性分析136
3.3.3振蕩的局部穩定性139
3.3.4振蕩的全局分岔142
3.4模型化神經活動的時滯微分系統的分岔146
3.4.1引言146
3.4.2平衡點與特征方程147
3.4.3分岔性質152
3.4.4數值結果159
3.5帶兩個不同時滯的神經系統模型的穩定性與分岔160
3.5.1模型的引入與它的局部線性分析160
3.5.2無自聯接的神經網絡163
3.5.3hopf分岔的方向與穩定性165
3.5.4用poincaré-lindstedt方法分析的結果165
3.6帶多個時滯的兩個耦合神經元系統168
3.6.1引言168
3.6.2線性穩定性分析169
3.6.3分岔分析181
3.6.4分岔的相互作用186
3.6.5結論189
3.7帶分布時滯兩個神經元系統的hopf分岔190
3.7.1模型的引入、局部穩定性與hopf分岔的存在性190
3.7.2分岔周期解的穩定性194
3.8帶兩個時滯調和振蕩器的分岔195
3.8.1引言195
3.8.2局部穩定性和hopf分岔的存在性196
3.8.3hopf分岔的方向和穩定性200
3.8.4共振余維2分岔200
3.9時滯微分方程中余維2和余維3的零奇異性205
3.9.1引言205
3.9.2一般方法205
3.9.3一般的兩維系統209
下冊
第4章三個神經元時滯系統的分岔215
第5章高階時滯神經網絡模型295
第6章在工程中的其他時滯動態模型340
第7章時滯混沌系統379
參考文獻409
- >
煙與鏡
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
唐代進士錄
- >
小考拉的故事-套裝共3冊
- >
自卑與超越
- >
中國人在烏蘇里邊疆區:歷史與人類學概述
- >
伯納黛特,你要去哪(2021新版)
- >
李白與唐代文化