中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
長距離相互作用.隨機及分數維動力學

包郵 長距離相互作用.隨機及分數維動力學

出版社:高等教育出版社出版時間:2010-06-01
開本: 16開 頁數: 308
本類榜單:自然科學銷量榜
中 圖 價:¥55.4(8.1折) 定價  ¥68.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

長距離相互作用.隨機及分數維動力學 版權信息

長距離相互作用.隨機及分數維動力學 本書特色

《長距離相互作用、隨機及分數維動力學》:Nonlinear Physical Science focuses on the recent advances of fundamental theories and principles, analytical and symbolic approaches, as well as computational techniques in nonlinear physical science and nonlinear mathematics with engineering applications.

長距離相互作用.隨機及分數維動力學 內容簡介

in memory of dr. george zaslavsky, long-range interactions, stochasticity and fractional dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. the book is dedicated to dr. george zaslavsky, who was one of three founders of the theory of hamiltonian chaos. the book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. a comprehensive theory for brain dynamics is also presented. in addition, the complexity and stochasticity for soliton chains and turbulence are addressed.
the book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

長距離相互作用.隨機及分數維動力學 目錄

1 fractional zaslavsky and henon discrete maps
vasily e. tarasov
1.1 introduction
1.2 fractional derivatives
1.2.1 fractional riemann-liouville derivatives
1.2.2 fractional caputo derivatives
1.2.3 fractional liouville derivatives
1.2.4 interpretation of equations with fractional derivatives.
1.2.5 discrete maps with memory
1.3 fractional zaslavsky maps
1.3.1 discrete chirikov and zaslavsky maps
1.3.2 fractional universal and zaslavsky map
1.3.3 kicked damped rotator map
1.3.4 fractional zaslavsky map from fractional differential equations
1.4 fractional h6non map
1.4.1 henon map
1.4.2 fractional henon map
1.5 fractional derivative in the kicked term and zaslavsky map
1.5.1 fractional equation and discrete map
1.5.2 examples
1.6 fractional derivative in the kicked damped term and generalizations of zaslavsky and henon maps
1.6.1 fractional equation and discrete map
1.6.2 fractional zaslavsky and henon maps
1.7 conclusion
references
2 self-similarity, stochasticity and fractionality
vladimir v uchaikin
2.1 introduction
2.1.1 ten years ago
2.1.2 two kinds of motion
2.1.3 dynamic self-similarity
2.1.4 stochastic self-similarity
2.1.5 self-similarity and stationarity
2.2 from brownian motion to levy motion
2.2.1 brownian motion
2.2.2 self-similar brownian motion in nonstationary nonhomogeneous environment
2.2.3 stable laws
2.2.4 discrete time levy motion
2.2.5 continuous time levy motion
2.2.6 fractional equations for continuous time levy motion
2.3 fractional brownian motion
2.3.1 differential brownian motion process
2.3.2 integral brownian motion process
2.3.3 fractional brownian motion
2.3.4 fractional gaussian noises
2.3.5 barnes and allan model
2.3.6 fractional levy motion
2.4 fractional poisson motion
2.4.1 renewal processes
2.4.2 self-similar renewal processes
2.4.3 three forms of fractal dust generator
2.4.4 nth arrival time distribution
2.4.5 fractional poisson distribution
2.5 fractional compound poisson process
2.5.1 compound poisson process
2.5.2 levy-poisson motion
2.5.3 fractional compound poisson motion
2.5.4 a link between solutions
2.5.5 fractional generalization of the levy motion
acknowledgments
appendix. fractional operators
references
3 long-range interactions and diluted networks
antonia ciani, duccio fanelli and stefano ruffo
3.1 long-range interactions
3.1.1 lack of additivity
3.1.2 equilibrium anomalies: ensemble inequivalence, negative specific heat and temperature jumps
3.1.3 non-equilibrium dynamical properties
3.1.4 quasi stationary states
3.1.5 physical examples
3.1.6 general remarks and outlook
3.2 hamiltonian mean field model: equilibrium and out-of- equilibrium features
3.2.1 the model
3.2.2 equilibrium statistical mechanics
3.2.3 on the emergence of quasi stationary states: non-
equilibrium dynamics
3.3 introducing dilution in the hamiltonian mean field model
3.3.1 hamiltonian mean field model on a diluted network
3.3.2 on equilibrium solution of diluted hamiltonian mean field
3.3.3 on quasi stationary states in presence of dilution
3.3.4 phase transition
3.4 conclusions
acknowledgments
references
4 metastability and transients in brain dynamics: problems and rigorous results
valentin s. afraimovich, mehmet k. muezzinoglu and
mikhail i. rabinovich
4.1 introduction: what we discuss and why now
4.1.1 dynamical modeling of cognition
4.1.2 brain imaging
4.1.3 dynamics of emotions
4.2 mental modes
4.2.1 state space
4.2.2 functional networks
4.2.3 emotion-cognition tandem
4.2.4 dynamical model of consciousness
4.3 competition--robustness and sensitivity
4.3.1 transients versus attractors in brain
4.3.2 cognitive variables
4.3.3 emotional variables
4.3.4 metastability and dynamical principles
4.3.5 winnerless competition--structural stability of transients
4.3.6 examples: competitive dynamics in sensory systems
4.3.7 stable heteroclinic channels
4.4 basic ecological model
4.4.1 the lotka-volterra system
4.4.2 stress and hysteresis
4.4.3 mood and cognition
4.4.4 intermittent heteroclinic channel
4.5 conclusion
acknowledgments
appendix 1
appendix 2
references
5 dynamics of soliton chains: from simple to complex and chaotic motions
konstantin a. gorshkov, lev a. ostrovsky and yury a. stepanyants
5.1 introduction
5.2 stable soliton lattices and a hierarchy of envelope solitons
5.3 chains of solitons within the framework of the gardner model
5.4 unstable soliton lattices and stochastisation
5.5 soliton stochastisation and strong wave turbulence in a resonator with external sinusoidal pumping
5.6 chains of two-dimensional solitons in positive-dispersion media
5.7 conclusion
few words in memory of george m. zaslavsky
references
6 what is control of turbulence in crossed fields?-don't even think of eliminating all vortexes!
dimitri volchenkov
6.1 introduction
6.2 stochastic theory of turbulence in crossed fields: vortexes of all sizes die out, but one
6.2.1 the method of renormalization group
6.2.2 phenomenology of fully developed isotropic turbulence
6.2.3 quantum field theory formulation of stochastic navier-stokes turbulence
6.2.4 analytical properties of feynman diagrams
6.2.5 ultraviolet renormalization and rg-equations
6.2.6 what do the rg representations sum?
6.2.7 stochastic magnetic hydrodynamics
6.2.8 renormalization group in magnetic hydrodynamics
6.2.9 critical dimensions in magnetic hydrodynamics
6.2.10 critical dimensions of composite operators in magnetic hydrodynamics
6.2.11 operators of the canonical dimension d = 2
6.2.12 vector operators of the canonical dimension d = 3
6.2.13 instability in magnetic hydrodynamics
6.2.14 long life to eddies of a preferable size
6.3 in search of lost stability
6.3.1 phenomenology of long-range turbulent transport in the scrape-off layer (sol) of thermonuclear reactors
6.3.2 stochastic models of turbulent transport in cross-field systems
6.3.3 iterative solutions in crossed fields
6.3.4 functional integral formulation of cross-field turbulent transport
6.3.5 large-scale instability of iterative solutions
6.3.6 turbulence stabilization by the poloidal electric drift
6.3.7 qualitative discrete time model of anomalous transport in the sol
6.4 conclusion
references
7 entropy and transport in billiards
m. courbage and s.m. saberi fathi
7.1 introduction
7.2 entropy
7.2.1 entropy in the lorentz gas
7.2.2 some dynamical properties of the barrier billiard model
7.3 transport
7.3.1 transport in lorentz gas
7.3.2 transport in the barrier billiard
7.4 concluding remarks
references
index
展開全部

長距離相互作用.隨機及分數維動力學 節選

《長距離相互作用、隨機及分數維動力學》內容簡介:In memory of Dr. George Zaslavsky, Long-range Interactions, Stochasticity and Fractional Dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

長距離相互作用.隨機及分數維動力學 相關資料

插圖:Note that the continuous limit of discrete systems with power-law long-range interactions gives differential equations with derivatives of non-integer orders with respect to coordinates (Tarasov and Zaslavsky, 2006; Tarasov, 2006). Fractional differentiation with respect to time is characterized by long-term memory effects that correspond to intrinsic dissipative processes in the physical systems. The memory effects to discrete maps mean that their present state evolution depends on all past states. The discrete maps with memory are considered in the papers (Fulinski and Kleczkowski, 1987;Fick et al., 1991; Giona, 1991; Hartwich and Fick, 1993; Gallas, 1993; Stanislavsky,2006; Tarasov and Zaslavsky, 2008; Tarasov, 2009; Edelman and Tarasov, 2009).The interesting question is a connection of fractional equations of motion and thediscrete maps with memory. This derivation is realized for universal and standard maps in (Tarasov and Zaslavsky, 2008; Tarasov, 2009). It is important to derive discrete maps with memory from equations of motion with fractional derivatives. It was shown (Zaslavsky et al., 2006) that perturbed by aperiodic force, the nonlinear system with fractional derivative exhibits a new type of chaotic motion called the fractional chaotic attractor.

長距離相互作用.隨機及分數維動力學 作者簡介

編者:羅朝俊 (墨西哥)阿弗萊諾維奇(Valentin Afraimovich) 叢書主編:(瑞典)伊布拉基莫夫Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville,USA.Dr. Valentin Afraimovich is a Proiessor at San Luis Potosi University, Mexico.

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 高柔性拖链电缆_卷筒电缆_耐磨耐折聚氨酯电缆-玖泰特种电缆 | 一体化净水器_一体化净水设备_一体化水处理设备-江苏旭浩鑫环保科技有限公司 | 精密模具制造,注塑加工,吹塑和吹瓶加工,EPS泡沫包装生产 - 济南兴田塑胶有限公司 | 精密五金加工厂-CNC数控车床加工_冲压件|蜗杆|螺杆加工「新锦泰」 | 电动高尔夫球车|电动观光车|电动巡逻车|电动越野车厂家-绿友机械集团股份有限公司 | 深圳善跑体育产业集团有限公司_塑胶跑道_人造草坪_运动木地板 | AGV叉车|无人叉车|AGV智能叉车|AGV搬运车-江西丹巴赫机器人股份有限公司 | 陶氏道康宁消泡剂_瓦克消泡剂_蓝星_海明斯德谦_广百进口消泡剂 | 北京普辉律师事务所官网_北京律师24小时免费咨询|法律咨询 | 反渗透阻垢剂-缓蚀阻垢剂厂家-循环水处理药剂-山东鲁东环保科技有限公司 | 双能x射线骨密度检测仪_dxa骨密度仪_双能x线骨密度仪_品牌厂家【品源医疗】 | 耐酸碱泵-自吸耐酸碱泵型号「品牌厂家」立式耐酸碱泵价格-昆山国宝过滤机有限公司首页 | 户外-组合-幼儿园-不锈钢-儿童-滑滑梯-床-玩具-淘气堡-厂家-价格 | sfp光模块,高速万兆光模块工厂-性价比更高的光纤模块制造商-武汉恒泰通 | 机械加工_绞车配件_立式离心机_减速机-洛阳三永机械厂 | 品牌设计_VI设计_电影海报设计_包装设计_LOGO设计-Bacross新越品牌顾问 | 烟雾净化器-滤筒除尘器-防爆除尘器-除尘器厂家-东莞执信环保科技有限公司 | 除湿机|工业除湿机|抽湿器|大型地下室车间仓库吊顶防爆除湿机|抽湿烘干房|新风除湿机|调温/降温除湿机|恒温恒湿机|加湿机-杭州川田电器有限公司 | 干式变压器厂_干式变压器厂家_scb11/scb13/scb10/scb14/scb18干式变压器生产厂家-山东科锐变压器有限公司 | 上海单片机培训|重庆曙海培训分支机构—CortexM3+uC/OS培训班,北京linux培训,Windows驱动开发培训|上海IC版图设计,西安linux培训,北京汽车电子EMC培训,ARM培训,MTK培训,Android培训 | 闭端端子|弹簧螺式接线头|防水接线头|插线式接线头|端子台|电源线扣+护线套|印刷电路板型端子台|金笔电子代理商-上海拓胜电气有限公司 | 粉末包装机-给袋式包装机-全自动包装机-颗粒-液体-食品-酱腌菜包装机生产线【润立机械】 | Q361F全焊接球阀,200X减压稳压阀,ZJHP气动单座调节阀-上海戎钛 | 工业PH计|工业ph酸度计|在线PH计价格-合肥卓尔仪器仪表有限公司 济南画室培训-美术高考培训-山东艺霖艺术培训画室 | 河南卓美创业科技有限公司-河南卓美防雷公司-防雷接地-防雷工程-重庆避雷针-避雷器-防雷检测-避雷带-避雷针-避雷塔、机房防雷、古建筑防雷等-山西防雷公司 | 台式恒温摇床价格_大容量恒温摇床厂家-上海量壹科学仪器有限公司 | 贴片电容代理-三星电容-村田电容-风华电容-国巨电容-深圳市昂洋科技有限公司 | bng防爆挠性连接管-定做金属防爆挠性管-依客思防爆科技 | 快速门厂家-快速卷帘门-工业快速门-硬质快速门-西朗门业 | 昊宇水工|河北昊宇水工机械工程有限公司 | 泥浆在线密度计厂家-防爆数字压力表-膜盒-远传压力表厂家-江苏大亚自控设备有限公司 | 超高频感应加热设备_高频感应电源厂家_CCD视觉检测设备_振动盘视觉检测设备_深圳雨滴科技-深圳市雨滴科技有限公司 | 胀套-锁紧盘-风电锁紧盘-蛇形联轴器「厂家」-瑞安市宝德隆机械配件有限公司 | 玻纤土工格栅_钢塑格栅_PP焊接_单双向塑料土工格栅_复合防裂布厂家_山东大庚工程材料科技有限公司 | 爱佩恒温恒湿测试箱|高低温实验箱|高低温冲击试验箱|冷热冲击试验箱-您身边的模拟环境试验设备技术专家-合作热线:400-6727-800-广东爱佩试验设备有限公司 | 合肥汽车充电桩_安徽充电桩_电动交流充电桩厂家_安徽科帝新能源科技有限公司 | 重庆私家花园设计-别墅花园-庭院-景观设计-重庆彩木园林建设有限公司 | 上海新光明泵业制造有限公司-电动隔膜泵,气动隔膜泵,卧式|立式离心泵厂家 | 广州监控安装公司_远程监控_安防弱电工程_无线wifi覆盖_泉威安防科技 | 移动厕所租赁|移动卫生间|上海移动厕所租赁-家瑞租赁 | YT保温材料_YT无机保温砂浆_外墙保温材料_南阳银通节能建材高新技术开发有限公司 |