中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
實用迭代分析 版權信息
- ISBN:9787030420787
- 條形碼:9787030420787 ; 978-7-03-042078-7
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
實用迭代分析 本書特色
袁錦昀教授是杰出的旅居巴西華人1957年出生于江蘇興化唐劉鎮,1977年考入南京工學院,巴西巴拉那聯邦大學數學系終身教授、工業數學研究所所長,巴西計算和應用數學學會副會長,巴西數學會巴拉那州分會會長,巴西科技部基金委數學終審組應用數學和計算數學負責人,巴西巴拉那基金委數學終身組成員。 《實用迭代分析(英文版)(精)》是由其創作的英文版實用迭代分析專著。
實用迭代分析 內容簡介
本書以不同的視角研究了基本迭代法在線性系統中的應用。本書系統的介紹了作者及其團隊的在迭代法方面的研究成果。從教學的角度講本書可以使學生較快較容易地掌握重點和抓住要害。從科研的角度講,本書給研究者提供了如何獲得新思路以及如何做研究的方法。作者還給出了在研究方法方面的研究。為培養研究生的自主科研能力,作者還提到的一些可能出現的問題以及可以用到的研究方法。
實用迭代分析 目錄
preface to the series in information and computational science
preface
chapter 1 introduction 1
1.1 background in linear algebra 1
1.1.1 basic symbols, notations, and de.nitions 1
1.1.2 vector norm 2
1.1.3matrix norm 4
1.1.4 spectral radii 8
1.2 spectralresultsofmatrix 10
1.3 specialmatrices 15
1.3.1 reducible and irreducible matrices 15
1.3.2 diagonally dominant matrices 16
1.3.3 nonnegative matrices 20
1.3.4 p-cyclic matrices 22
1.3.5 toeplitz, hankel, cauchy, cauchy-like and hessenberg matrices 24
1.4 matrix decomposition 27
1.4.1 lu decomposition 27
1.4.2 singular value decomposition 28
1.4.3 conjugate decomposition 30
1.4.4 qz decomposition 32
1.4.5 s & t decomposition 33
1.5 exercises 37
chapter 2 basic methods and convergence 40
2.1 basic concepts 40
2.2 the jacobi method 43
2.3 the gauss-seidel method 46
2.4 the sor method 49
2.5 m-matrices and splitting methods 58
2.5.1 m-matrix 58
2.5.2 splitting methods 60
2.5.3 comparison theorems 62
2.5.4 multi-splitting methods 66
2.5.5 generalized ostrowski-reich theorem 67
2.6 error analysis of iterative methods 69
27 iterative re.nement 70
2.8 exercises 75
chapter 3 non-stationary methods 78
3.1 conjugategradientmethods 79
3.1.1 steepest descent method 79
3.1.2 conjugate gradient method 80
3.1.3 preconditioned conjugate gradient method 83
3.1.4 generalized conjugate gradient method 85
3.1.5 theoretical results on the conjugate gradient method 85
3.1.6 generalized product-type methods based on bi-cg 91
3.1.7 inexact preconditioned conjugate gradient method 92
3.2 lanczos method 93
3.3 gmres method and qmr method 95
3.3.1 gmres method 95
3.3.2 qmr method 98
3.3.3 variants of the qmr method 100
3.4 direct projection method 101
3.4.1 theory of the direct projection method 102
3.4.2 direct projection algorithms 105
3.5 semi-conjugate direction method 107
3.5.1 semi-conjugate vectors 107
3.5.2 left conjugate direction method 110
3.5.3 one possible way to .nd left conjugate vector set 112
3.5.4 remedy for breakdown 117
3.5.5 relation with gaussian elimination 119
3.6 krylov subspace methods 121
3.7 exercises 122
chapter 4 iterative methods for least squares problems 126
4.1 introduction 126
4.2 basic iterative methods 128
4.3 blocksor methods 131
4.3.1 block sor algorithms 131
4.3.2 convergence and optimal factors 132
4.3.3 example 135
4.4 preconditioned conjugate gradient methods 136
4.5 generalized least squares problems 138
4.5.1 block sor methods 139
4.5.2 preconditioned conjugate gradient method 142
4.5.3 comparison 143
4.5.4 sor-like methods 144
4.6 rank de.cient problems 148
4.6.1 augmented system of normal equation 149
4.6.2 block sor algorithms 150
4.6.3 convergence and optimal factor 151
4.6.4 preconditioned conjugate gradient method 154
4.6.5 comparison results 158
4.7 exercises 161
chapter 5 preconditioners 163
5.1 lu decomposition and orthogonal transformations 164
5.1.1 gilbert and peierls algorithm for lu decomposition 164
5.1.2 orthogonal transformations 166
5.2 stationary preconditioners 167
5.2.1 jacobi preconditioner 167
5.2.2 ssor preconditioner 168
5.3 incompletefactorization 169
5.3.1 point incomplete factorization 170
5.3.2 modi.ed incomplete factorization 172
5.3.3 block incomplete factorization 172
5.4 diagonally dominant preconditioner 173
5.5 preconditionerforleastsquaresproblems 177
5.5.1 preconditioner by lu decomposition 179
5.5.2 preconditioner by direct projection method 181
5.5.3 preconditioner by qr decomposition 182
5.6 exercises 186
chapter 6 singular linear systems 188
6.1 introduction 188
6.2 properties of singular systems 191
6.3 splittingmethodsforsingularsystems 195
6.4 nonstationarymethodsforsingularsystems 219
6.4.1 symmetric and positive semide.nite systems 219
6.4.2 general systems 222
6.5 exercises 225
bibliography 228
index 249
《信息與計算科學叢書》 253
preface
chapter 1 introduction 1
1.1 background in linear algebra 1
1.1.1 basic symbols, notations, and de.nitions 1
1.1.2 vector norm 2
1.1.3matrix norm 4
1.1.4 spectral radii 8
1.2 spectralresultsofmatrix 10
1.3 specialmatrices 15
1.3.1 reducible and irreducible matrices 15
1.3.2 diagonally dominant matrices 16
1.3.3 nonnegative matrices 20
1.3.4 p-cyclic matrices 22
1.3.5 toeplitz, hankel, cauchy, cauchy-like and hessenberg matrices 24
1.4 matrix decomposition 27
1.4.1 lu decomposition 27
1.4.2 singular value decomposition 28
1.4.3 conjugate decomposition 30
1.4.4 qz decomposition 32
1.4.5 s & t decomposition 33
1.5 exercises 37
chapter 2 basic methods and convergence 40
2.1 basic concepts 40
2.2 the jacobi method 43
2.3 the gauss-seidel method 46
2.4 the sor method 49
2.5 m-matrices and splitting methods 58
2.5.1 m-matrix 58
2.5.2 splitting methods 60
2.5.3 comparison theorems 62
2.5.4 multi-splitting methods 66
2.5.5 generalized ostrowski-reich theorem 67
2.6 error analysis of iterative methods 69
27 iterative re.nement 70
2.8 exercises 75
chapter 3 non-stationary methods 78
3.1 conjugategradientmethods 79
3.1.1 steepest descent method 79
3.1.2 conjugate gradient method 80
3.1.3 preconditioned conjugate gradient method 83
3.1.4 generalized conjugate gradient method 85
3.1.5 theoretical results on the conjugate gradient method 85
3.1.6 generalized product-type methods based on bi-cg 91
3.1.7 inexact preconditioned conjugate gradient method 92
3.2 lanczos method 93
3.3 gmres method and qmr method 95
3.3.1 gmres method 95
3.3.2 qmr method 98
3.3.3 variants of the qmr method 100
3.4 direct projection method 101
3.4.1 theory of the direct projection method 102
3.4.2 direct projection algorithms 105
3.5 semi-conjugate direction method 107
3.5.1 semi-conjugate vectors 107
3.5.2 left conjugate direction method 110
3.5.3 one possible way to .nd left conjugate vector set 112
3.5.4 remedy for breakdown 117
3.5.5 relation with gaussian elimination 119
3.6 krylov subspace methods 121
3.7 exercises 122
chapter 4 iterative methods for least squares problems 126
4.1 introduction 126
4.2 basic iterative methods 128
4.3 blocksor methods 131
4.3.1 block sor algorithms 131
4.3.2 convergence and optimal factors 132
4.3.3 example 135
4.4 preconditioned conjugate gradient methods 136
4.5 generalized least squares problems 138
4.5.1 block sor methods 139
4.5.2 preconditioned conjugate gradient method 142
4.5.3 comparison 143
4.5.4 sor-like methods 144
4.6 rank de.cient problems 148
4.6.1 augmented system of normal equation 149
4.6.2 block sor algorithms 150
4.6.3 convergence and optimal factor 151
4.6.4 preconditioned conjugate gradient method 154
4.6.5 comparison results 158
4.7 exercises 161
chapter 5 preconditioners 163
5.1 lu decomposition and orthogonal transformations 164
5.1.1 gilbert and peierls algorithm for lu decomposition 164
5.1.2 orthogonal transformations 166
5.2 stationary preconditioners 167
5.2.1 jacobi preconditioner 167
5.2.2 ssor preconditioner 168
5.3 incompletefactorization 169
5.3.1 point incomplete factorization 170
5.3.2 modi.ed incomplete factorization 172
5.3.3 block incomplete factorization 172
5.4 diagonally dominant preconditioner 173
5.5 preconditionerforleastsquaresproblems 177
5.5.1 preconditioner by lu decomposition 179
5.5.2 preconditioner by direct projection method 181
5.5.3 preconditioner by qr decomposition 182
5.6 exercises 186
chapter 6 singular linear systems 188
6.1 introduction 188
6.2 properties of singular systems 191
6.3 splittingmethodsforsingularsystems 195
6.4 nonstationarymethodsforsingularsystems 219
6.4.1 symmetric and positive semide.nite systems 219
6.4.2 general systems 222
6.5 exercises 225
bibliography 228
index 249
《信息與計算科學叢書》 253
展開全部
書友推薦
- >
小考拉的故事-套裝共3冊
- >
二體千字文
- >
詩經-先民的歌唱
- >
羅庸西南聯大授課錄
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術叢書(紅燭學術叢書)
- >
月亮與六便士
- >
苦雨齋序跋文-周作人自編集
- >
【精裝繪本】畫給孩子的中國神話
本類暢銷
-
代數學引論-(第二卷)(第3版)
¥36.3¥44.1