包郵 圖像分析中的模型和逆問(wèn)題
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
聲音簡(jiǎn)史
圖像分析中的模型和逆問(wèn)題 版權(quán)信息
- ISBN:9787510070198
- 條形碼:9787510070198 ; 978-7-5100-7019-8
- 裝幀:一般膠版紙
- 冊(cè)數(shù):暫無(wú)
- 重量:暫無(wú)
- 所屬分類:>>
圖像分析中的模型和逆問(wèn)題 本書特色
this book fulfills a need in the field of computer science research and education. it is not intended for professional mathematicians, but it undoubtedly deals with applied mathematics. most of the expectations of the topic are fulfilled: precision, exactness, completeness, and excellent references to the original historical works. however, for the sake of read-ability, many demonstrations are omitted. it is not a book on practical image processing, of which so many abound, although all that it teaches is directly concerned with image analysis and image restoration. it is the perfect resource for any advanced scientist concerned with a better un-derstanding of the theoretical models underlying the methods that have efficiently solved numerous issues in robot vision and picture processing.
圖像分析中的模型和逆問(wèn)題 內(nèi)容簡(jiǎn)介
《圖像分析中的模型和逆問(wèn)題》,本書是一部十分優(yōu)秀的講述成像分析中的貝葉斯成像和樣條模型的教材。隨著更多數(shù)學(xué)家在新興學(xué)科數(shù)字成像數(shù)理中參與地越來(lái)越多,并且在解決復(fù)雜問(wèn)題的模型建立方面扮演越來(lái)越重要的角色,做出的貢獻(xiàn)也日益呈現(xiàn)。這本書出現(xiàn)顯得尤為重要。本書更多地強(qiáng)調(diào)基于能量的模型,這些模型大多源于作者參與的機(jī)器人視野和X光線照相術(shù),如追蹤3D線、射線圖像處理、3D重組和X線斷層攝影術(shù)、等等的工業(yè)項(xiàng)目。讀者對(duì)象:該書的目標(biāo)讀者是想學(xué)習(xí)更多在成像處理應(yīng)用的數(shù)理統(tǒng)計(jì)人員和想要將數(shù)學(xué)知識(shí)應(yīng)用于自身研究的工程人員。
圖像分析中的模型和逆問(wèn)題 目錄
foreword by henri maitreacknowledgmentslist of figuresnotation and symbols1 introduction 1.1 about modeling 1.1.1 bayesian approach 1.1.2 inverse problem 1.1.3 energy-based formulation 1.1.4 models 1.2 structure of the book spline models2 nonparametrie spline models 2.1 definition 2.2 optimization 2.2.1 bending spline 2.2.2 spline under tension 2.2.3 robustness 2.3 bayesian interpretation 2.4 choice of regularization parameter 2.5 approximation using a surface 2.5.1 l-spline surface 2.5.2 quadratic energy 2.5.3 finite element optimization3 parametric spline models 3.1 representation on a basis of b-splines 3.1.1 approximation spline 3.1.2 construction of b-splines 3.2 extensions 3.2.1 multidimensional case 3.2.2 heteroscedasticity 3.3 high-dimensional splines 3.3.1 revealing directions 3.3.2 projection pursuit regression4 auto-associative models 4.1 analysis of multidimensional data 4.1.1 a classical approach 4.1.2 toward an alternative approach 4.2 auto-associative composite models 4.2.1 model and algorithm 4.2.2 properties 4.3 projection pursuit and spline smoothing 4.3.1 projection index 4.3.2 spline smoothing 4.4 illustrationⅱ markov models5 fundamental aspects 5.1 definitions 5.1.1 finite markov fields 5.1.2 gibbs fields 5.2 markov-gibbs equivalence 5.3 examples 5.3.1 bending energy 5.3.2 bernoulli energy 5.3.3 gaussian energy 5.4 consistency problem6 bayesian estimation 6.1 principle 6.2 cost functions 6.2.1 cost b-hnction examples 6.2.2 calculation problems7 simulation and optimization 7.1 simulation 7.1.1 homogeneous markov chain 7.1.2 metropolis dynamic 7.1.3 simulated gibbs distribution 7.2 stochastic optimization 7.3 probabilistic aspects 7.4 deterministic optimization 7.4.1 icm algorithm 7.4.2 relaxation algorithms8 parameter estimation 8.1 complete data 8.1.1 maximum likelihood 8.1.2 maximum pseudolikelihood 8.1.3 logistic estimation 8.2 incomplete data 8.2.1 maximum likelihood 8.2.2 gibbsian em algorithm 8.2.3 bayesian calibration ⅲ modeling in action9 model-building 9.1 multiple spline approximation 9.1.1 choice of data and image characteristics 9.1.2 definition of the hidden field 9.1.3 building an energy 9.2 markov modeling methodology 9.2.1 details for implementation10 degradation in imaging 10.1 denoising 10.1.1 models with explicit discontinuities 10.1.2 models with implicit discontinuities 10.2 deblurring 10.2.1 a particularly ill-posed problem 10.2.2 model with implicit discontinuities 10.3 scatter 10.3.1 direct problem 10.3.2 inverse problem 10.4 sensitivity functions and image fusion 10.4.1 a restoration problem 10.4.2 transfer function estimation 10.4.3 estimation of stained transfer function11 detection of filamentary entities 11.1 valley detection principle 11.1.1 definitions 11.1.2 bayes-markov formulation 11.2 building the prior energy 11.2.1 detection term 11.2.2 regularization term 11.3 optimization 11.4 extension to the case of an image pair12 reconstruction and projections 12.1 projection model 12.1.1 transmission tomography 12.1.2 emission tomography 12.2 regularized reconstruction 12.2.1 regularization with explicit discontinuities 12.2.2 three-dimensional reconstruction 12.3 reconstruction with a single view 12.3.1 generalized cylinder 12.3.2 training the deformations 12.3.3 reconstruction in the presence of occlusion13 matching 13.1 template and hidden outline 13.1.1 rigid transformations 13.1.2 spline model of a template 13.2 elastic deformations 13.2.1 continuous random fields 13.2.2 probabilistie aspectsreferencesauthor indexsubject index
圖像分析中的模型和逆問(wèn)題 作者簡(jiǎn)介
Bernard Chalmond是國(guó)際知名學(xué)者,在數(shù)學(xué)和物理學(xué)界享有盛譽(yù)。本書凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。
- >
姑媽的寶刀
- >
隨園食單
- >
巴金-再思錄
- >
莉莉和章魚
- >
自卑與超越
- >
李白與唐代文化
- >
名家?guī)阕x魯迅:故事新編
- >
伯納黛特,你要去哪(2021新版)