-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
負折射和負折身率材料物理-光電性質和不同實現方法-(影印版) 版權信息
- ISBN:9787301215524
- 條形碼:9787301215524 ; 978-7-301-21552-4
- 裝幀:平裝
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
負折射和負折身率材料物理-光電性質和不同實現方法-(影印版) 本書特色
本書是影印版學術專著,原書由斯普林格出版社于2007年出版。與負折射和負折射率材料相關的“神奇”現象有很多,相關研究正呈現出迅猛發(fā)展的勢頭。如束控制元件、無反射介面、平透鏡、超透鏡等一系列應用令人目眩神迷。本書由多位該領域專家集體編撰而成,匯集了近年來該方向的重要研究成果,是這一領域研究人員**的參考書,也是試圖了解這一方向的讀者很好的綜述性讀物。
負折射和負折身率材料物理-光電性質和不同實現方法-(影印版) 內容簡介
本書討論了光電的負折射和負折射率材料。各種獲得負折射和負折射率材料的方法都在本書中有所涵蓋,比如利用光子晶體、聲子晶體、裂環(huán)振蕩器和連續(xù)媒介等等。另外,本書還對波、導波行為和非線性效應作了仔細討論。本書還討論了左手材料極化理論,磁性左手材料合成 ,srr-rod 實現,采用 srr-rod 元胞的低損耗導波帶,左手材料以及電磁波和電子波在均勻介質中的負折射等等。本書適合材料科學、固體物理、光學等研究方向的研究者和研究生閱讀。
負折射和負折身率材料物理-光電性質和不同實現方法-(影印版) 目錄
Y.Zhang and A.Mascarenhas
1.1 Introduction
1.1.1 Negative Refraction
1.1.2 Negative Refraction with Spatial Dispersion
1.1.3 Negative Refraction with Double Negativity
1.1.4 Negative Refraction Without Left―Handed Behavior
1.1.5 Negative Refraction Using Photonic Crystals
1.1.6 nom Negative RJefraction to Perfect Lens
1.2 Conditions for Realizing Negative Refraction and Zero Reflection
1.3 Conclusion
References
2 Anisotropic Field Distributions in Left-Handed Guided Wave Electronic Structures and Negative Refractive Bicrystal Heterostructures
C.M Krowne
2.1 Anisotropic Field Distributions in Left―Handed Guided Wave Electronic Structures
2.1.1 Introduction
2.1.2 Anisotropic Green's Function Based Upon LHM or DNM Properties
2.1.3 Determination of the Eigenvalues and Eigenvectors for LHM or DNM
2.1.4 Numerical Calculations of the Electromagnetic Field for LHM or DNM
2.1.5 Conclusion
2.2 Negative Refractive Bicrystal Heterostructures
2.2.1 Introduction
2.2.2 Theoretical Crystal Tensor Rotations
2.2.3 Guided Stripline Structure
2.2.4 Bearn Steering and Control Component Action
2.2.5 Electromagnetic Fields
2.2.6 Surface Current Distributions
2.2.7 Conclusion
References
3 "Left.Handed" Magnetic Granular Composites
S.T.Chui,L.B.Hu,Z.Lin and L.ZhOU.
3.1 Introduction
3.2 Description of“Left―Handed”Electromagnetic、Waves:The Effect of the Imaginary Wave Vector.
3.3 Electromagnetic Wave Propagations in Homogeneous Magnetic Materials
3.4 Some Characteristics of Electromagnetic Wave Propagation in Anisotropic“Left―Handed”Materials
3.4.1 “Left―Handed”Characteristic of Electromagnetic Wave Propagation in Uniaxial Anisotropic“Left-Handed” Media
3.4.2 Characteristics of Refraction of Electromagnetic Waves at the Interfs|ces of Isotropic Regular Media and Anisotropic“Left―Handed”Media
3.5 Multilayer Structures Left―Handed Material:An Exact Example
Refefences
4 Spatial Dispersion,Polaritons,and Negative Refraction
V.M. Agranovich and Yu.N.Gartstein
4.1 Introduction
4.2 Nature ofNegative Refraction:Historical Remarks
4.2.1 Mandelstam and Negative Refraction.
4.2.2 Cherenkov Radiation
4.3 Maxwell Equations and Spatial Dispersion
4.3.1 Dielectric Tensor
4.3.2 Isotropic Systems with Spatial Inversion
4.3.3 Connection to Microscopics
4.3.4 Isotropic Systems Without Spatial Inversion
4.4 Polaritons with Negative Group Velocity
4.4.1 Excitons with Negative Efiective Mass in Nonchiral Media
4.4.2 Chiral Systems in the Vicinity of Excitonic Transitions
4.4.3 Chiral Systems in the Vicinity of the Longitudinal Frequency
4.4.4 Surface Polaritons
4.5 Magnetic Permeability at Optical Frequencies
4.5.1 Magnetic Moment of a Macroscopic Body
4.6 Related Interesting Efiects
4.6.1 Generation of Harmonics from a Nonlinear Material with Negative Refraction
4.6.2 Ultra-Short Pulse Propagation in Negative Refraction Materials.
4.7 Concluding Remarks.
References
5 Negative Refraction in Photonic Crystals
W.T.Lu.P.Vodo.and S.Sridhar
5.1 Introduction
5.2 Materials with Negative Refraction
5.3 Negative Refraction in Microwave Metallic Photonic Crystals
5.3.1 Metalllc PC ln Parallel―Plate Waveguide
5.3.2 Numerical Simulation ofTM Wave Scattering
5.3.3 Metallic PC in Free Space
5.3.4 High-Order Bragg Waves at the Surface of Metallic Photonic Crystals
5.4 Conclusion and Perspective
References
6 Negative Refraction and Subwavelength Focusing in TWO Dimensional Photonic Crystals
E.Ozbay and G.0zkan
6.1 Introduction
6.2 Negative Refraction and Subwavelength Imaging of TM Polarized Electromagnetic Waves
6.3 Negative Refraction and Point Focusing of TE Polarized Electromagnetic Waves
6.4 Negative Refraction and Focusing Analysis for a Metallodlelectric Photonic Crystal
6.5 Conclusion
References
7 Negative Refraction and Imaging with Quasicrystals
X.Zhang.Z.Feng.Y.Wang,Z.-Y.Li,B.Cheng and D.-Z.Zhang
7.1 Introduction
7.2 Negative Refraction by High―Symmetric Quasicrystal
7.3 Focus and Image by High-Symmetric (1)uasicrystal Slab
7.4 Negative Refraction and Focusing of Acoustic Wave by High―Symmetric Quasiperiodic Phononic Crystal
7.5 Summary
References
8 Generalizing the Concept of Negative Medium to Acoustic Waves
J.Li,K.H.Fung,Z.Y. Liu,P.Sheng and C.T.Chan
8.1 Introduction
8.2 A Simple Model
8.3 An Example of Negative Mass
8.4 Acoustic Double―Negative Material
8.4.1 Construction of Double―Negative Material by Mie Resonances
8.5 Focusing Effect Using Double―Negative Acoustic Material
8.6 Focusing bv Uniaxial Efiective Medium Slab
References
9 Experiments and Simulations of Microwave Negative Refraction in Split Ring and Wire Array Negative Index Materials,2D Split-Ring Resonator
and 2D Metallic Disk Photonic Crystals
F.J.Rachford.D.L.Smith and P.F.Loschiatpo.
9.1 Introduction
9.2 Theory
9.3 FDTD Simulations in an Ideal Negative Index Medium.
9.4 Simulations and Experiments with Split―Ring Resonators and Wire Arrays.
9.5 Split―Ring Resonator Arrays as a 2D Photonic Crystal
9.6 Hexagonal Disk Array 2D Photonic Crystal Simulations Focusing
9.7 Modeling Refraction Through the Disk Medium.
9.8 Hexagonal Disk Array Measurements―nansmission and Focusing.
9.9 Hexagonal Disk Array Measurements―Refraction
9.10 Conclusions
References
10 Super Low Loss Guided Wave Bands Using Split Ring Resonator.Rod Assemblies as Left.Handed Materials
C.M.Krowne
10.1 Introduction
10.2 Metamaterial Representation
10.3 Guiding Structure
10.4 Numerical Results
10.5 Conclusions
References
11 Development of Negative Index of Refraction Metamaterials with Split Ring Resonators and Wires for RF Lens Applications
C.G.Parazzoli.R.B.Greor and M.H.Tanielian
11.1 Electromagnetic Negative Index Materials
11.1.1 The Physics of NIMs
11.1.2 Design of the NIM Unit Cell
11.1.3 Origin of Losses in Left―Handed Materials
11.1.4 Reduction in Transmission Dne to Polarization Coupling
11.1.5 The Efiective Medium Limit
11.1.6 NIM Indefinite Media and Negative Refraction
11.2 Demonstration of the NIM Existence Using Snell's Law
11.3 Retrieval of geff and μeff from the Scattering Parameters
11.3.1 Homogeneous Efiective Medium
11.3.2 Lifting the Ambiguities
11.3.3 Inversion for Lossless Materials
11.3.4 Periodic Efiective Medium
11.3.5 COntinuum Formulation
11.4 Characterization of NIM8
11.4.1 Measurement of NIM Losses
11.4.2 Experimental Confirmation of Negative Phase Shift
in NIM Slabs
11.5 NIM Optics
11.5.1 NIM Lenses and Their Properties
11.5.2 Aberration Analysis of Negative Index Lenses
11.6 Design and Characterization of Cylindrical NIM Lenses
11.6.1 Cylindrical NIM Lens in a Maveguide
11.7 Design and Characterization of Spherical NIM Lenses
11.7.1 Characterization of the Empty Aperture
11.7.2 Design and Characterization of the PIM lens
11.7.3 Design and Characterization 0f the NIM Lens
11.7.4 Design and Characterization ofthe GRIN Lens
11.7.5 Comparison of Experimental Data for Empty Aperture.PIM.NIM.and GRIN Lenses
11.7.6 Comparison of Simulated and Experimental Aberrations for the PIM.NIM.and GRIN Lenses
11.7.7 Weight Comparison Between the PIM.NIM and GRIN Lenses
11.8 Conclusion
References
12 Nonlinear Efiects in Left-Handed Metamaterials
I.V.Shadrivov and Y.S.Kivshar
12.1 Introduction
12.2 Nonlinear Response of Metamaterials
12.2.1 Nonlinear Magnetic Permeability
12.2.2 Nonlinear Dielectric Permittivity
12.2.3 FDTD Simulations of Nonlinear Metamaterial
12.2.4 Electromagnetic Spatial Solitons
12.3 Kerr.Type Nonlinear Metamaterials
12.3.1 Nonlinear Surface Waves
12.3.2 Nonlinear Pulse Propagation and Surface-Wave Solitons
12.3.3 Nonlinear Guided WlaveS in Left―Handed Slab Waveguide
12.4 Second―Order Nonlinear Efietcts in Metamaterials
12.4.1 Second―Harmonics Generation
12.4.2 Enhanced SHG in Double―Resonant Metamaterials
12.4.3 Nonlinear Quadratic Flat Lens
12.5 Conclusions
References
Index
- >
龍榆生:詞曲概論/大家小書
- >
朝聞道
- >
唐代進士錄
- >
經典常談
- >
伯納黛特,你要去哪(2021新版)
- >
我與地壇
- >
二體千字文
- >
詩經-先民的歌唱