中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)

包郵 伽羅瓦理論

出版社:世界圖書出版公司出版時(shí)間:2010-09-01
開本: 32開 頁數(shù): 152
中 圖 價(jià):¥26.8(9.2折) 定價(jià)  ¥29.0 登錄后可看到會(huì)員價(jià)
加入購物車 收藏
開年大促, 全場(chǎng)包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

伽羅瓦理論 版權(quán)信息

伽羅瓦理論 本書特色

這本《伽羅瓦理論》由美國(guó)的Harold M. Edwards所著,內(nèi)容是:This exposition of Galois theory was originally going to be Chapter 1 of thecontinuation of my book Fermat's Last Theorem, but it soon outgrew anyreasonable bounds for an introductory chapter, and I decided to make it aseparate book. However, this decision was prompted by more than just thelength. Following the precepts of my sermon "Read the Masters!" [E2], I made the reading of Galois' original memoir a major part of my study ofGalois theory, and I saw that the modern treatments of Galois theory lackedmuch of the simplicity and clarity of the original. Therefore I wanted towrite about the theory in a way that would not only explain it, but explain it in terms close enough to Galois' own to make his memoir accessible to thereader, in the same way that I tried to make Riemann's memoir on the zetafunction and Kummer's papers on Fermat's Last Theorem accessible in myearlier books, [Eli and I-E3].

伽羅瓦理論 內(nèi)容簡(jiǎn)介

this exposition of galois theory was originally going to be chapter i of the continuation of my book ferrnat's last theorem, but it soon outgrew any reasonable bounds for an introductory chapter, and i decided to make it a separate book. however, this decision was prompted by more than just the length. following the precepts of my sermon "read the masters!" [e2], imade the reading of galois' original memoir a major part of my study of galois theory, and i saw that the modern treatments of galois theory lacked much of the simplicity and clarity of the original. therefore i wanted to write about the theory in a way that would not only explain it, but explain it in terms close enough to galois' own to make his memoir accessible to the reader, in the same way that i tried to make riemann's memoir on the zeta function and kummer's papers on fermat's last theorem accessible in my earlier books, [eli and [e3]. clearly i could not do this within the confines of one expository chapter

伽羅瓦理論 目錄

acknowledgments xiii
1. galois 2. influence of lagrange 3. quadratic equations 4.1700 n.c. to a.o. 1500 5. solution of cubic 6. solution of quartic 7.impossibility of quintic 8. newton 9. symmetric polynomials in roots 10. fundamental theorem on symmetric polynomials 11. proof 12.newton's theorem 13. discriminants
first exercise set
14. solution of cubic 15. lagrange and vandermonde 16. lagrange resolvents 17. solution of quartic again 18. attempt at quintic ~19.lagrange's rdfiexions
second exercise set
20. cyciotomic equations 21. the cases n = 3, 5 22. n = 7, 11 23.general case 24. two lemmas 25. gauss's method ~26. p-gons by ruler and compass 27. summary
third exercise set
28. resolvents 29. lagrange's theorem 30. proof 31. galois resolvents 32. existence of galois resolvents 33. representation of the splitting field as k(t) ~34. simple algebraic extensions 35. euclidean algorithm 36. construction of simple algebraic extensions 37. galois'method
fourth exercise set
展開全部

伽羅瓦理論 節(jié)選

《伽羅瓦理論》內(nèi)容簡(jiǎn)介:This exposition of Galois theory was originally going to be Chapter 1 of thecontinuation of my book Fermat's Last Theorem, but it soon outgrew anyreasonable bounds for an introductory chapter, and I decided to make it aseparate book. However, this decision was prompted by more than just thelength. Following the precepts of my sermon "Read the Masters!" [E2], Imade the reading of Galois' original memoir a major part of my study ofGalois theory, and I saw that the modern treatments of Galois theory lackedmuch of the simplicity and clarity of the original. Therefore I wanted towrite about the theory in a way that would not only explain it, but explain itin terms close enough to Galois' own to make his memoir accessible to thereader, in the same way that I tried to make Riemann's memoir on the zetafunction and Kummer's papers on Fermat's Last Theorem accessible in myearlier books, [El] and [E3]. Clearly I could not do this within the confinesof one expository chapter.

商品評(píng)論(0條)
暫無評(píng)論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: 耙式干燥机_真空耙式干燥机厂家-无锡鹏茂化工装备有限公司 | 塑料检查井_双扣聚氯乙烯增强管_双壁波纹管-河南中盈塑料制品有限公司 | ET3000双钳形接地电阻测试仪_ZSR10A直流_SXJS-IV智能_SX-9000全自动油介质损耗测试仪-上海康登 | 高通量组织研磨仪-多样品组织研磨仪-全自动组织研磨仪-研磨者科技(广州)有限公司 | 云南外加剂,云南速凝剂,云南外加剂代加工-普洱澜湄新材料科技有限公司 | 佛山市钱丰金属不锈钢蜂窝板定制厂家|不锈钢装饰线条|不锈钢屏风| 电梯装饰板|不锈钢蜂窝板不锈钢工艺板材厂家佛山市钱丰金属制品有限公司 | 长沙发电机-湖南发电机-柴油发电机供应厂家-长沙明邦智能科技 | 全自动烧卖机厂家_饺子机_烧麦机价格_小笼汤包机_宁波江北阜欣食品机械有限公司 | 超声波清洗机-超声波清洗设备定制生产厂家 - 深圳市冠博科技实业有限公司 | 上海刑事律师|刑事辩护律师|专业刑事犯罪辩护律师免费咨询-[尤辰荣]金牌上海刑事律师团队 | 湖南自考_湖南自学考试| sus630/303cu不锈钢棒,440C/430F/17-4ph不锈钢研磨棒-江苏德镍金属科技有限公司 | CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | TwistDx恒温扩增-RAA等温-Jackson抗体-默瑞(上海)生物科技有限公司 | 深圳侦探联系方式_深圳小三调查取证公司_深圳小三分离机构 | 天津货架厂_穿梭车货架_重型仓储货架_阁楼货架定制-天津钢力仓储货架生产厂家_天津钢力智能仓储装备 | 空气能暖气片,暖气片厂家,山东暖气片,临沂暖气片-临沂永超暖通设备有限公司 | 成都中天自动化控制技术有限公司| 吉林污水处理公司,长春工业污水处理设备,净水设备-长春易洁环保科技有限公司 | 乐泰胶水_loctite_乐泰胶_汉高乐泰授权(中国)总代理-鑫华良供应链 | 家用净水器代理批发加盟_净水机招商代理_全屋净水器定制品牌_【劳伦斯官网】 | 砂石生产线_石料生产线设备_制砂生产线设备价格_生产厂家-河南中誉鼎力智能装备有限公司 | 房车价格_依维柯/大通/东风御风/福特全顺/江铃图片_云梯搬家车厂家-程力专用汽车股份有限公司 | 山东led显示屏,山东led全彩显示屏,山东LED小间距屏,临沂全彩电子屏-山东亚泰视讯传媒有限公司 | 考勤系统_考勤管理系统_网络考勤软件_政企|集团|工厂复杂考勤工时统计排班管理系统_天时考勤 | 连续油炸机,全自动油炸机,花生米油炸机-烟台茂源食品机械制造有限公司 | 乐考网-银行从业_基金从业资格考试_初级/中级会计报名时间_中级经济师 | 舞台木地板厂家_体育运动木地板_室内篮球馆木地板_实木运动地板厂家_欧氏篮球地板推荐 | 凝胶成像仪,化学发光凝胶成像系统,凝胶成像分析系统-上海培清科技有限公司 | 济南玻璃安装_济南玻璃门_济南感应门_济南玻璃隔断_济南玻璃门维修_济南镜片安装_济南肯德基门_济南高隔间-济南凯轩鹏宇玻璃有限公司 | 橡胶接头_橡胶软接头_套管伸缩器_管道伸缩器厂家-巩义市远大供水材料有限公司 | 智成电子深圳tdk一级代理-提供TDK电容电感贴片蜂鸣器磁芯lambda电源代理经销,TDK代理商有哪些TDK一级代理商排名查询。-深圳tdk一级代理 | 防腐木批发价格_深圳_惠州_东莞防腐木厂家_森源(深圳)防腐木有限公司 | 上海单片机培训|重庆曙海培训分支机构—CortexM3+uC/OS培训班,北京linux培训,Windows驱动开发培训|上海IC版图设计,西安linux培训,北京汽车电子EMC培训,ARM培训,MTK培训,Android培训 | 魔方网-培训咨询服务平台 | 医学模型生产厂家-显微手术模拟训练器-仿真手术模拟训练系统-北京医教科技 | 胶水,胶粘剂,AB胶,环氧胶,UV胶水,高温胶,快干胶,密封胶,结构胶,电子胶,厌氧胶,高温胶水,电子胶水-东莞聚力-聚厉胶粘 | 工业车间焊接-整体|集中除尘设备-激光|等离子切割机配套除尘-粉尘烟尘净化治理厂家-山东美蓝环保科技有限公司 | 无线联网门锁|校园联网门锁|学校智能门锁|公租房智能门锁|保障房管理系统-KEENZY中科易安 | 地埋式垃圾站厂家【佳星环保】小区压缩垃圾中转站转运站 | 黑龙江京科脑康医院-哈尔滨精神病医院哪家好_哈尔滨精神科医院排名_黑龙江精神心理病专科医院 |