-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
數論基礎 版權信息
- ISBN:9787510004674
- 條形碼:9787510004674 ; 978-7-5100-0467-4
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
數論基礎 內容簡介
This book is intended to complement my Elements of Algebra, and it is similarly motivated by the problem of solving polynomial equations.However, it is independent of the algebra book, and probably easier. In Elements of Algebra we sought solution by radicals, and this led to theconcepts of fields and groups and their fusion in the celebrated theory of Galois. In the present book we seek integer solutions, and this leads to the concepts of rings and ideals which merge in the equally celebrated theo of ideals due to Kummer and Dedekind.
Solving equations in integers is the central problem of number theory,so this book is truly a number theory book, with most of the results found in standard number theory courses. However, numbers are best understood through their algebraic structure, and the necessary algebraic concepts--rings and ideals--have no better motivation than number theory.
數論基礎 目錄
1 Natural numbers and integers
1.1 Natural numbers
1.2 Induction
1.3 Integers
1.4 Division with remainder
1.5 Binary notation
1.6 Diophantine equations
1.7 TheDiophantus chord method
1.8 Gaussian integers
1.9 Discussion
2 The Euclidean algorithm
2.1 The gcd by subtraction
2.2 The gcd by division with remainder
2.3 Linear representation of the gcd
2.4 Primes and factorization
2.5 Consequences of unique prime factorization
2.6 Linear Diophantine equations
2.7 *The vector Euclidean algorithm
2.8 *The map of relatively prime pairs
2.9 Discussion
3 Congruence arithmetic
3.1 Congruence mod n
3.2 Congruence classes and their arithmetic
3.3 Inverses modp
3.4 Fermat's little theorem
3.5 Congruence theorems of Wilson and Lagrange..
3.6 Inversesmodk
3.7 Quadratic Diophantine equations
3.8 *Primitive roots
3.9 *Existence of primitive roots
3.10 Discussion
4 The RSA eryptosystem
4.1 Trapdoor functions
4.2 Ingredients of RSA
4.3 Exponentiation mod n
4.4 RSA encryption and decryption
4.5 Digital signatures
4.6 Other computational issues
4.7 Discussion
5 The Pell equation
5.1 Side and diagonal numbers
5.2 The equation x2 - 2y2 = 1
5.3 The group of solutions
5.4 The general Pell equation and
5.5 The pigeonhole argument
5.6 *Quadratic forms
5.7 *The map of primitive vectors
5.8 *Periodicity in the map ofx2 -ny2
5.9 Discussion
6 The Gaussian integers
6.1 Zand its norm
6.2 Divisibility and primes in Zand Z
6.3 Conjugates
6.4 Division in Z[i]
6.5 Fermat's two square theorem
6.6 Pythagorean triples
6.7 *Primes of the form 4n + 1
6.8 Discussion
……
7 Quadratic integers
8 The four square theorem
9 Quadratic reciprocity
10 Rings
11 Ideals
12 Prime ideals
Bibliography
Index
- >
我從未如此眷戀人間
- >
月亮與六便士
- >
月亮虎
- >
姑媽的寶刀
- >
龍榆生:詞曲概論/大家小書
- >
我與地壇
- >
上帝之肋:男人的真實旅程
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
-
代數學引論-(第二卷)(第3版)
¥36.3¥44.1