包郵 實(shí)分析和概率論-經(jīng)典原版書庫(英文版.第2版)(英文版.第2版)
經(jīng)典原版書庫
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
聲音簡史
實(shí)分析和概率論-經(jīng)典原版書庫(英文版.第2版) 版權(quán)信息
- ISBN:7111193482
- 條形碼:9787111193487 ; 978-7-111-19348-7
- 裝幀:簡裝本
- 冊(cè)數(shù):暫無
- 重量:暫無
- 所屬分類:>>
實(shí)分析和概率論-經(jīng)典原版書庫(英文版.第2版) 內(nèi)容簡介
這是一本廣受稱贊的教科書,清晰地講解了現(xiàn)代概率論以及度量空間與概率測度之間的相互作用。本書分兩部分,**部分介紹了實(shí)分析的內(nèi)容,包括基本集合論、一般拓?fù)鋵W(xué)、測度論、積分法、巴拿赫空間和拓?fù)淇臻g中的泛函分析導(dǎo)論、凸集和函數(shù)、拓?fù)淇臻g上的測度等。第二部分介紹了基于測度論的概率方面的內(nèi)容,包括大數(shù)律、遍歷定理、中心極限定理、條件期望、鞅收斂等。另外,隨機(jī)過程一章 (第12章) 還介紹了布朗運(yùn)動(dòng)和布朗橋。
與前版相比,本版內(nèi)容更完善,一開始就介紹了實(shí)數(shù)系的基礎(chǔ)和泛代數(shù)中的一致逼近的斯通-魏爾斯特拉斯定理;修訂和改進(jìn)了幾節(jié)的內(nèi)容,擴(kuò)充了大量歷史注記;增加了很多新的習(xí)題,以及對(duì)一些習(xí)題的解答的提示。
實(shí)分析和概率論-經(jīng)典原版書庫(英文版.第2版) 目錄
1 Foundations; Set Theory
1.1 Definitions for Set Theory and the Real Number System
1.2 Relations and Orderings
* 1.3 Transfinite Induction and Recursion
1.4 Cardinality
1.5 The Axiom of Choice and Its Equivalents
2 General Topology
2.1 Topologies, Metrics, and Continuity
2.2 Compactness and Product Topologies
2.3 Complete and Compact Metric Spaces
2.4 Some Metrics for Function Spaces
2.5 Completion and Completeness of Metric Spaces
*2.6 Extension of Continuous Functions
*2.7 Uniformities and Uniform Spaces
*2.8 Compactification
3 Measures
3.1 Introduction to Measures
3.2 Semirings and Rings
3.3 Completion of Measures
3.4 Lebesgue Measure and Nonmeasurable Sets
*3.5 Atomic and Nonatomic Measures
4 Integration
4.1 Simple Functions
*4.2 Measurability
4.3 Convergence Theorems for Integrals
4.4 Product Measures
*4.5 Daniell-Stone Integrals
5 Lp Spaces; Introduction to Functional Analysis
5.1 Inequalities for Integrals
5.2 Norms and Completeness of LP
5.3 Hilbert Spaces
5.40rthonormal Sets and Bases
5.5 LinearForms on Hilbert Spaces, Inclusions of LP Spaces,
and Relations Between Two Measures
5.6 Signed Measures
6 Convex Sets and Duality of Normed Spaces
6.1 Lipschitz, Continuous, and Bounded Functionals
6.2 Convex Sets and Their Separation
6.3 Convex Functions
*6.4 Duality of Lp Spaces
6.5 Uniform Boundedness and Closed Graphs
*6.6 The Bmnn-Minkowski Inequality
7 Measure, Topology, and Differentiation,
7.1 Baire and Borel o'-Algebras and Regularity of Measures
*7.2 Lebesgue's Differentiation Theorems
*7.3 The Regularity Extension
*7.4 The Dual of C(K) and Fourier Series
*7.5 Almost Uniform Convergence and Lusin's Theorem
8 Introduction to Probability Theory
8.1 Basic Definitions
8.2 Infinite Products of Probability Spaces
8.3 Laws of Large Numbers
*8.4 Ergodic Theorems
9 Convergence of Laws and Central Limit Theorems
9.1 Distribution Functions and Densities
9.2 Convergence of Random Variables
9.3 Convergence of Laws
9.4 Characteristic Functions
9.5 Uniqueness of Characteristic Functions
and a Central Limit Theorem
9.6 Triangular Arrays and Lindeberg's Theorem
9.7 Sums of Independent Real Random Variables
*9.8 The Levy Continuity Theorem; Infinitely Divisible
and Stable Laws
10 Conditional Expectations and Martingales
10.1 Conditional Expectations
10.2 Regular Conditional Probabilities and Jensen's
Inequality
10.3 Martingales
10.4 Optional Stopping and Uniform Integrability
10.5 Convergence of Martingales and Submartingales
* 10.6 Reversed Martingales and Submartingales
* 10.7 Subadditive and Superadditive Ergodic Theorems
11 Convergence of Laws on Separable Metric Spaces
11.1 Laws and Their Convergence
11.2 Lipschitz Functions
11.3 Metrics for Convergence of Laws
11.4 Convergence of Empirical Measures
11.5 Tightness and Uniform Tightness
*11.6 Strassen's Theorem: Nearby Variables
With Nearby Laws
* 11.7 A Uniformity for Laws and Almost Surely Converging
Realizations of Converging Laws
* 11.8 Kantorovich-Rubinstein Theorems
* 11.9 U-Statistics
12 Stochastic Processes
12.1 Existence of Processes and Brownian Motion
12.2 The Strong Markov Property of Brownian Motion
12.3 Reflection Principles, The Brownian Bridge,
and Laws of Suprema
12.4 Laws of Brownian Motion at Markov Times:
Skorohod Imbedding
12.5 Laws of the Iterated Logarithm
13 Measurability: Borel Isomorphism and Analytic Sets
* 13.1 Borel Isomorphism
* 13.2 Analytic Sets
Appendix A Axiomatic Set Theory
A.1 Mathematical Logic
A.2 Axioms for Set Theory
A.3 Ordinals and Cardinals
A.4 From Sets to Numbers
Appendix B Complex Numbers, Vector Spaces,
and Taylor's Theorem with Remainder
Appendix C The Problem of Measure
Appendix D Rearranging Sums of Nonnegative Terms
Appendix E Pathologies of Compact Nonmetric Spaces
Author Index
Subject Index
Notation Index
- >
李白與唐代文化
- >
詩經(jīng)-先民的歌唱
- >
姑媽的寶刀
- >
煙與鏡
- >
我從未如此眷戀人間
- >
名家?guī)阕x魯迅:朝花夕拾
- >
有舍有得是人生
- >
巴金-再思錄