中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
現代光量子存儲(純英文)

包郵 現代光量子存儲(純英文)

作者:徐瑞頤著
出版社:清華大學出版社出版時間:2024-10-01
開本: 16開
中 圖 價:¥203.0(7.0折) 定價  ¥290.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

現代光量子存儲(純英文) 版權信息

現代光量子存儲(純英文) 本書特色

本書是徐端頤教授繼中文版《光量子存儲》之后在光量子存儲領域的又一本巨著。涵蓋光量子存儲從概念到大批量生產的創新產品開發的詳細內容,具有極高的技術價值和實用價值。內容包括設計、制造、工藝、集成到驗證、數字化的*先進的相干硅光子集成電路 (Si-PIC) 芯片光學引擎和模擬高速、長距離相干光收發器、DSP、SFP /XFP/QSFP28/QSFP-DD 光收發器、DFB/FP/VCSEL 激光器、APD/PD 接收器、無源光器件,包括薄膜濾波器、光纖布拉格光柵(FBG)、DWDM和OADM器件、EDFA、MEMS、LCoS、ROADM、WSS、MCS、精密光子IC芯片工程、硬件和固件設計、光線路卡和DWDM光學系統工程。光量子存儲領域科研和開發人員不可多得的參考書。

現代光量子存儲(純英文) 內容簡介

It has proven track records of innovative product development from concept to high volume production with specialization in state-of-the-art coherent silicon photonics integrated circuit (Si-PIC) chip optical engine from design, fabrication, processes, integration to verification, digital and analog high speed (>100Gbps) long reach coherent optical transceivers, DSP, SFP /XFP/QSFP28/QSFP-DD optical transceivers, DFB/FP/VCSEL lasers, APD/PD receivers, passive optical devices including thin film filter, fiber Bragg grating (FBG), DWDM and OADM devices, EDFA, MEMS, LCoS, ROADM, WSS, MCS, precision photonics IC chip engineering, hardware and firmware designs, optical line cards, and DWDM optical system engineering.

現代光量子存儲(純英文)現代光量子存儲(純英文) 前言

Information memory is an important means of human civilization transmission and a core link of modern information technology. Quantum photonic memory is an essential basic device in the era from classical information to quantum information. Quantum photonic memory should be able to store various quantum states including with any quantum state. Like classical computers,generalpurpose quantum computers require quantum memory for complex computational functions. Depending on the specific computing chip,the memory must store the corresponding quantum information carrier. Usually classical memory measured in bits,and todays classical memory can reach the order of terabytes (240). So the Optical Memory National Engineering Research Centre (OMNERC) at Tsinghua University has been engaged in optical memory research since the early 1990s. Classical memory a memory unit stores only one bit,so the capacity of the memory is actually the number of classical memory units. Due to the characteristics of quantum coherence,one memory unit of quantum memory can store N qubits at one time. Recent studies have shown that quantum photonic memory can store up to 100 qubits and more than all the classical memory. Therefore,Quantum photonic memory is more important in quantum information than classical memory in classical information because quantum information cannot be copied and amplified. The single photon can be efficiently stored in longlived spin states and the ability to resist ambient noise in actual system transportation can improve more. With the gradual advancement of the above research,quantum USB disk will be enter the practical link first. Quantum photonic memory is more important in quantum information than classical memory in classical information because quantum information cannot be copied and amplified. There are many research groups in the world including OMNERC at Tsinghua University engaged in quantum memory research at present that all the independent indexes of quantum photonic memory have good results. Application of quantum photonic memory has just become so widely used while the quantum processor evolves. The quantum processor designed mapping between the two systems. The quantum processor then yield information about the target quantum system. Difficult electronic structure problem of a target molecule can mappe onto the qubits of the quantum processor for solving optimization problems: The solution of an optimization problem can encode into the ground state of a Hamiltonian. This ground state can be using an iterative,quantumclassical algorithm illustrated at bottom. The quantum processor is prepared. The energy of the state is measured and can be used the classical computer. A classical optimization algorithm then suggests a new quantum state. This quantum speedup is possible by being able to encode the component vector. Therefor quantum technologies become part of everyday lives in the coming decades. So quantum information science are rapidly developing,including ultraprecise quantum sensors that could propel fundamental science forward by leaps and bounds; powerful quantum computers to tackle insoluble problems in finance and logistics; and quantum communications to connect these machines as part of longdistance networks,quantum computers operate on the 1000qubit scale. Anticipate millions of qubits are required to solve important problems that are out of reach of todays most powerful supercomputers. There is a global quantum race to develop quantum computers that can help in many important societal challenges from drug discovery to making fertilizer production more energy efficient and solving important problems in nearly every industry,ranging from aeronautics to the financial sector. That works so well and the potential to scaleup by connecting hundreds or even thousands of quantum computing microchips. Towards quantum computers that are robust to errors,suppressing quantum errors by scaling a surface code logical qubit could be the most advanced supercomputer. All experiments validate the unique architecture that the quantum photonic memory been developing—providing an exciting route towards truly largescale quantum computing. We are still growing our research and teaching in this area,with plans for new teaching programs and appointments. Quantum photonic memory will be pivotal in helping to solve some of the most pressing global issues. And with teams spanning the quantum photonic memory and technology research,OMNERC has both a breadth and a depth of expertise in this. I have been engaged in the research of photonic memory and press published a monograph Photonic Memory in 2021,which is very popular with readers. As the world confronted with challenge by exploded increasing amounts of big data. Every day zillions of data generated through the events of the world. I collected and sorted out the new research results of OMRC and at home and abroad in this field in recent years and wrote this monograph,which named Advanced Quantum Photonic Memory Application.

現代光量子存儲(純英文) 目錄

Chapter 1The latest development in photonic memory

1.1New developments in photonics

1.2Other big data storage technology

1.3Photonic quantum for memory

1.4Controllabledipole quantum memory

1.5MaxwellBloch equations

1.6Ramantype optical quantum memory

1.7Precision of spinechobased quantum memories

1.8Integrated photonics for memory

1.9Photonic integration solid state memory

1.10Other new quantum memory technologies

1.10.1Ultraviolet photonic storage

1.10.2Plasmonic optical storage

1.10.3Xray storage

1.10.4Nanoprobe and molecular polymer storage

1.10.5Electronic quantum holography

1.10.6Compositive application of the different principles

Chapter 2Fundamentals of quantum information

2.1Introduction

2.1.1Quantum computing (QC) roadmap

2.1.2New quantum computation roadmap

2.2Basic concepts

2.2.1Quatum information

2.2.2Targets of quantum information research

2.2.3Experiments

2.2.4Primary concepts

2.2.5Separability criteria and positive maps

2.3Basic concepts

2.3.1Maximally entangled states

2.3.2Channels

2.3.3Observables and preparations

2.3.4Quantum mechanics in phase space

2.4Microaperture laser for photonic memory

2.4.1Teleportation and dense coding

2.4.2Entanglement enhanced teleportation

2.4.3Dense coding

2.4.4Estimating and copying

2.4.5Distillation of entanglement

2.4.6Quantum error correction

2.4.7Quantum computing

2.4.8Quantum cryptography

2.5Entanglement measures

2.5.1General properties and definitions

2.5.2Two qubits

2.5.3Entanglement measures under symmetry

2.6Channel capacity

2.6.1The general case

2.6.2The classical capacity

2.6.3The quantum capacity

2.7Multiple inputs

2.8Quantum probability

2.8.1Review of quantum probability

2.8.2Why classical probability does not suffice

2.8.3Towards a mathematical model

2.8.4Quantum probability

2.8.5Operations on probability spaces

2.8.6Examples of quantum operations

2.8.7Quantum impossibilities

2.8.8Quantum novelties

2.9Dense quantum coding and quantum finite automata

2.9.1Holevos theorem and the entropy coalescence lemma

2.9.2The asymptotic of random access codes

2.9.3Oneway quantum finite automata

2.9.4Quantum advantage for dense coding

2.10Quantum data compression

2.10.1Quantum data compression: an example

2.10.2Schumacher encoding in general

2.10.3Mixedstate coding: Holevo information

2.10.4Accessible information

2.11Photonic technologies for quantum information

2.11.1Singlephoton sources

2.11.2Entangledphoton sources

2.11.3Singlephoton detectors

2.11.4Mathematical background

Chapter 3Multidimension Photonic Memory

3.1Mechanism of photochromic multidimension memory

3.1.1Photochromic reaction

3.1.2Multiwavelength photochromic storage process

3.1.3Model of data writing

3.2Experiments for multiwavelength and multilevel storage

3.2.1The influence of initial reflectivity to writing speed

3.2.2The influence of the maximum reflectivity to writing process

3.2.3Written time constant k

3.2.4Reflectivity of the reflective layer

3.2.5Time constants k

3.3Crosstalk in multiwavelength and multilevel storage

3.3.1Emerging of crosstalk

3.3.2The calculations of crosstalk

3.4Nondestructive readout

3.5Multiwavelength and multilevel storage system

3.5.1System architecture

3.5.2Optical channel characteristics and crosstalk analysis

3.6Modulation coding and error correction

3.6.1Modulation coding

3.6.2The error correction coding

3.6.3Multiwavelength and multilevel storage error code correction

3.6.4ReedSolomon errorcorrecting code

3.7Application of multiwavelength and multilevel storage

3.7.1Multilevel bluray disc drive

3.7.2Threewavelength eightlevel optical storage

3.7.3Multilevel photochromic medium

3.7.4Multilevel amplitude modulation

3.7.5Rate 7/8 runlength and level modulation for multilevel ROM

3.7.67/8 runlength and level modulation code

3.7.7Level modulation process

3.7.8Multilevel amplitudemodulation

3.7.9Systems integration

3.7.10Multilevel runlengthlimited (MLRLL) modulation

3.7.11Three wavelength and multilevel storage with mask

Chapter 4Photonic superresolution memory

4.1Overview

4.1.1Nearfield interaction and microscopy

4.1.2Nearfield optics

4.1.3Theoretical modeling of nearfield nanoscopic interactions

4.1.4Theoretical modeling of nearfield nanoscopic interactions

4.2Principles of nearfield optics

4.2.1Base theoretical works

4.2.2Perturbative or selfconsistent approach

4.2.3Theories based on matching boundary conditions

4.2.4Expansion in plane waves: grating and diffraction theory

4.2.5Perturbative diffraction theory

4.2.6Scattering theory

4.2.7Nearfield distributions

4.2.8Interaction and coupling to the farfield

4.3Optical solid immersion lens (OSIL)

4.3.1Parameters of nearfield optical disc systems

4.3.2Solid immersion lens designs

4.3.3Lens design with NA=1.9 for first surface recording

4.3.4Air gap dependence of the spot size for practical optical discs

4.4Superresolution nearfield structure (SRENS)

4.4.1Numerical model for super resolution effect

4.4.2Numerical approach

4.4.3Correct Fourier transform

4.4.4Simulation of the readout signal

4.4.5SRENS with ferroelectrics of chalcogenides

4.5Microaperture laser for NFO data storage

4.5.1Model and numerical methods

4.5.2Numericalresults

4.6Plasmonic nearfield recording (PNFR)

4.6.1Holographic lithography (HL) application

4.6.2Plasmonic nanostructures

4.6.3Plasmonic storage medium

4.6.4Nanogap control with optical antennas (Metallic nanoantennas)

4.6.5Plasmonic nanostructures for optical storage

4.6.6The results of FDTD simulations

4.7Metamaterial immersion lenses (MIL)

4.7.1Theory of MIL

4.7.2Simulations and analysis

4.7.3Application in the future

4.8Dynamic pressure air bearing nanogap control

4.8.1Nanogap flight system design theory model

4.8.2Lubrication model on surface interface of optical head/disc

4.8.3Solving discrete modified Reynolds equations

4.8.4Stream function on the underside of microflying head

4.8.5Dynamic characteristics of micron flight systems

4.8.6Nearfield optical dynamic flight experiment system

4.9Micro positive pressure nanogap flying head design

4.9.1Positive pressure microflying head design

4.9.2The negative pressure microflying head design

4.9.3Reform design of the slider from magnetic storage

4.9.4Comparative analysis of the microflying head design

4.9.5Adaptive suspension design

4.10Nanogap flight experimental and testing

4.10.1Main special testing equipment

4.10.2The nearfield spacing testing

4.10.3Flight system resonance characteristics testing

4.10.4Flying start/stop characteristics testing

Chapter 5Nanophotonic memory

5.1Nanophotonics and quantum memories

5.1.1Nanophotonics

5.1.2Nanolithography

5.1.3Optical nanoscopy for data storage

5.1.4Rewritable data storage

5.1.5Paint it black

5.1.6Slow light and memory

5.1.7Photonecho quantum memory

5.2Analysis of a quantum memory for photons

5.2.1Principles

5.2.2General solution

5.3Atomic distribution and memory efficiency

5.3.1Memory efficiency versus storage duration

5.3.2Analysis of results

5.3.3Control and releasing of photon

5.3.4Energy control

5.3.5Methods

5.4Photonic quantum controlle memory function

5.4.1Electron spins in quantum

5.4.2Enhancement of excitonic spontaneous emission

5.4.3Planar microcavities

5.4.4Clock signals

5.4.5Quantum memory and decoherence time

5.4.6T1 and T2 for electron spins

5.4.7T1 and T2 for nuclear spins

5.5Singlephoton emission and distribution of entangled quantum states

5.5.1Singlephoton interferometer with quantum phase modulators

5.5.2Generation of singlephoton pulses

5.6Singlephoton wavepackets and memory in atomic vapor

5.6.1Electronics and photonics integration

5.6.2Wavelength switched optical networks

5.6.3Silicon optical phased array

5.6.4Singlephoton wavepackets to atomic memory

5.6.5Solid state lightmatter interface at photon

5.6.6Photon memory in atomic vapor

5.7Photon storage in atomic media

5.7.1Solidstate memory at the single photon level

5.7.2A singlephoton transistor using nanoscale surface plasmons

5.7.3Photon correlations

5.7.4Multiphoton dynamics

5.8Optical dense atomic memory medium

5.8.1Λtype optical dense atomic media

5.8.2Optimal retrieval

5.8.3Adiabatic retrieval and storage

5.8.4Shaping retrieval into an arbitrary mode

5.9Effects of metastable state nondegeneracy

5.9.1Optimal control using gradient ascent

5.9.2Free space model

5.9.3Adjoint equations of motion in the cavity model

5.10Control field optimization for adiabatic storage

5.11Analysis of photon number in quantum memory

5.11.1Quantum memory for light

5.11.2Methods

5.12Quantum solid memory

5.12.1Atomic memory

5.12.2Stable solidstate source of single photons

5.12.3Stopped times of light storage

5.13Photon solidstate quantum memories

5.13.1Memory operation and properties

5.13.2Analytical model of secondorder interference in coincidence
measurements

5.13.3Simplied model for HOM visibility

5.13.4Forbidden regions

5.13.5Cooperative effects for photons and electrons

5.13.6Nanoscale optical interactions

5.13.7Lateral nanoscopic localization

5.13.8Quantum confinement effects

5.13.9New cooperative transitions

5.13.10Nanoscale electronic energy transfer

5.13.11Quantum dots

References



展開全部

現代光量子存儲(純英文) 作者簡介

徐端頤,清華大學教授,歷任清華大學微細工程研究所所長、光存儲國家工程研究中心主任、國家重點基礎研究973首席科學家、美國賓夕法尼亞大學等大學的兼職教授、國際光學光子學會資深委員。已出版光學存儲國際技術會議論文集2本,英文專著2本,中文專著5本,在國內外刊物上發表論文4百余篇,擁有相關中國發明專利60余項,美國發明專利兩項。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 礼仪庆典公司,礼仪策划公司,庆典公司,演出公司,演艺公司,年会酒会,生日寿宴,动工仪式,开工仪式,奠基典礼,商务会议,竣工落成,乔迁揭牌,签约启动-东莞市开门红文化传媒有限公司 | 生物颗粒燃烧机-生物质燃烧机-热风炉-生物颗粒蒸汽发生器-丽水市久凯能源设备有限公司 | 气胀轴|气涨轴|安全夹头|安全卡盘|伺服纠偏系统厂家-天机传动 | 慈溪麦田广告公司,提供慈溪广告设计。 | 精密机械零件加工_CNC加工_精密加工_数控车床加工_精密机械加工_机械零部件加工厂 | ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 高防护蠕动泵-多通道灌装系统-高防护蠕动泵-www.bjhuiyufluid.com慧宇伟业(北京)流体设备有限公司 | 制丸机,小型中药制丸机,全自动制丸机价格-甘肃恒跃制药设备有限公司 | 澳洁干洗店加盟-洗衣店干洗连锁「澳洁干洗免费一对一贴心服务」 干洗加盟网-洗衣店品牌排行-干洗设备价格-干洗连锁加盟指南 | 焊接烟尘净化器__焊烟除尘设备_打磨工作台_喷漆废气治理设备 -催化燃烧设备 _天津路博蓝天环保科技有限公司 | 上海租奔驰_上海租商务车_上海租车网-矢昂汽车服务公司 | 烟台螺纹,烟台H型钢,烟台钢材,烟台角钢-烟台市正丰金属材料有限公司 | 碳化硅,氮化硅,冰晶石,绢云母,氟化铝,白刚玉,棕刚玉,石墨,铝粉,铁粉,金属硅粉,金属铝粉,氧化铝粉,硅微粉,蓝晶石,红柱石,莫来石,粉煤灰,三聚磷酸钠,六偏磷酸钠,硫酸镁-皓泉新材料 | 仓储货架_南京货架_钢制托盘_仓储笼_隔离网_环球零件盒_诺力液压车_货架-南京一品仓储设备制造公司 | 知企服务-企业综合服务(ZiKeys.com)-品优低价、种类齐全、过程管理透明、速度快捷高效、放心服务,知企专家! | 深圳公司注册-工商注册公司-千百顺代理记账公司 | 斗式提升机_链式斗提机_带式斗提机厂家无锡市鸿诚输送机械有限公司 | EFM 022静电场测试仪-套帽式风量计-静电平板监测器-上海民仪电子有限公司 | 定量包装秤,吨袋包装称,伸缩溜管,全自动包装秤,码垛机器人,无锡市邦尧机械工程有限公司 | 纯水电导率测定仪-万用气体检测仪-低钠测定仪-米沃奇科技(北京)有限公司www.milwaukeeinst.cn 锂辉石检测仪器,水泥成分快速分析仪-湘潭宇科分析仪器有限公司 手术室净化装修-手术室净化工程公司-华锐手术室净化厂家 | 注塑机-压铸机-塑料注塑机-卧式注塑机-高速注塑机-单缸注塑机厂家-广东联升精密智能装备科技有限公司 | 超声波_清洗机_超声波清洗机专业生产厂家-深圳市好顺超声设备有限公司 | 河南卓美创业科技有限公司-河南卓美防雷公司-防雷接地-防雷工程-重庆避雷针-避雷器-防雷检测-避雷带-避雷针-避雷塔、机房防雷、古建筑防雷等-山西防雷公司 | 首页-浙江橙树网络技术有限公司| 武汉高低温试验机-现货恒温恒湿试验箱-高低温湿热交变箱价格-湖北高天试验设备 | 培训中心-海南香蕉蛋糕加盟店技术翰香原中心官网总部 | 焊接烟尘净化器__焊烟除尘设备_打磨工作台_喷漆废气治理设备 -催化燃烧设备 _天津路博蓝天环保科技有限公司 | 丹佛斯压力传感器,WISE温度传感器,WISE压力开关,丹佛斯温度开关-上海力笙工业设备有限公司 | 电子元器件呆滞料_元器件临期库存清仓尾料_尾料优选现货采购处理交易商城 | 京港视通报道-质量走进大江南北-京港视通传媒[北京]有限公司 | 开业庆典_舞龙舞狮_乔迁奠基仪式_开工仪式-神挚龙狮鼓乐文化传媒 | 淄博不锈钢无缝管,淄博不锈钢管-鑫门物资有限公司 | 千斤顶,液压千斤顶-力良企业,专业的液压千斤顶制造商,shliliang.com | 交联度测试仪-湿漏电流测试仪-双85恒温恒湿试验箱-常州市科迈实验仪器有限公司 | 玉米深加工设备|玉米加工机械|玉米加工设备|玉米深加工机械-河南成立粮油机械有限公司 | POS机办理_个人pos机免费领取-银联pos机申请首页 | 带锯机|木工带锯机圆木推台锯|跑车带锯机|河北茂业机械制造有限公司| | 天津热油泵_管道泵_天津高温热油泵-天津市金丰泰机械泵业有限公司【官方网站】 | 滚筒烘干机_转筒烘干机_滚筒干燥机_转筒干燥机_回转烘干机_回转干燥机-设备生产厂家 | 胀套-锁紧盘-风电锁紧盘-蛇形联轴器「厂家」-瑞安市宝德隆机械配件有限公司 | 转子泵_凸轮泵_凸轮转子泵厂家-青岛罗德通用机械设备有限公司 |