掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
MACHINE VISION ONLINE DETECTION TECHNOLOGY 版權信息
- ISBN:9787502498191
- 條形碼:9787502498191 ; 978-7-5024-9819-1
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
MACHINE VISION ONLINE DETECTION TECHNOLOGY 內容簡介
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.
MACHINE VISION ONLINE DETECTION TECHNOLOGY 目錄
Contents
Chapter 1Introduction
1.1Machine vision technology
1.1.1The development of machine vision technology
1.1.2The application of machine vision technology
1.1.3Composition of machine vision system
1.1.4Advantages of machine vision system
1.2Research and applications of metal surface inspection
1.3Surface defect detection and identification algorithms
1.4Challenges and development
1.5The main content and basic structure
References
Chapter 2Composition of Online Detection System
2.1Imaging device
2.1.1Industrial cameras
2.1.2Camera imaging model
2.1.3Lens
2.1.4Main parameters and calculations of imaging devices
2.2Light source
2.2.1Incandescent lamp
2.2.2Halogen lamp
2.2.3Gas discharge lamp
2.2.4Lightemitting diode
2.2.5Laser light source
2.3Data acquisition controller
2.4Mechanical structure and supporting facilities
2.5Data processing and computing system
2.5.1Graphical user interface
2.5.2Algorithms
2.5.3System architecture
References
Chapter 3Image Processing and Recognition Algorithms
3.1A review of digital image processing
3.1.1Image and digital image
3.1.2Image processing technology
3.1.3Image engineering
3.1.4Surface defect detection algorithms
3.2Image restoration
3.2.1Theoretical model of image restoration
3.2.2Spatial filtering
3.3Feature extraction
3.3.1Overview
3.3.2Geometric feature extraction
3.3.3Gray level histogram feature extraction
3.3.4Image texture feature extraction
3.3.5Feature point extraction and description
3.3.6Deep learning feature extraction
3.4Image classification
3.4.1Deep convolutional neural networks
3.4.2Classic deep convolutional neural networks
3.4.3Deep convolutional neural networks with attention mechanism
3.4.4Support Vector Machine
References
Chapter 4Multiple Information Fusion for Defect Detection
4.1Multiinformation fusion
4.1.1Concept of information fusion
4.1.2Hierarchical structure of information fusion
4.1.3Overview of information fusion algorithms
4.2Deep 3D object detection for point cloud data
4.2.13D detection techniques
4.2.2RGBD 3D detection techniques
4.33D detection of surface defects in hightemperature castings
4.3.1Types and characteristics of surface defects in hightemperature castings
4.3.23D shape reconstruction
4.3.3Overview of hightemperature casting 3D inspection system
4.3.4Design of high temperature casting billet 3D detection system
4.3.5Hardware selection for hightemperature casting 3D inspection
system
4.3.6Imaging scheme for 3D inspection system
4.3.7Algorithm for fusion of graylevel and depth information in hightemperature castings
References
Chapter 5Deployment of Online Detection Algorithms
5.1Realtime requirements of surface online inspection techniques
5.1.1Online inspection techniques
5.1.2Conventional surface defect detection methods
5.1.3Realtime online surface inspection techniques
5.2Algorithm multithreading acceleration
5.2.1Introduction to threads
5.2.2Introduction to multithreading
5.2.3Introduction to multithreading in Python
5.2.4Thread synchronization in python
5.2.5Global interpreter lock
5.3Algorithm multiprocessing acceleration
5.3.1Multiprogramming techniques
5.3.2Process scheduling
5.3.3Process state
5.3.4Python multiprocessing
5.3.5Multiprocess realization
5.4GPU acceleration of algorithms
5.4.1Training and deployment of deep learning
5.4.2Optimization principles of TensorRT
5.4.3Optimization steps of TensorRT
5.4.4GPU parallel acceleration
5.4.5NVIDIA GPU acceleration application case study
5.4.6Huawei Atlas GPU acceleration application case study
References
Chapter 6Highspeed Wire Surface Online Inspection System
6.1The demand for online surface inspection of highspeed wire
6.1.1Background of online surface inspection for highspeed wire
6.1.2Requirements for online surface inspection of highspeed wire
6.2Highspeed wire surface imaging system and image characteristics
6.2.1Highspeed wire surface imaging system
6.2.2Characteristics of the images
6.3Correction of highspeed wire surface images
6.3.1Reasons for correction
6.3.2Basic principles and bottlenecks of correction
6.3.3Advantages and disadvantages of different correction methods
6.4Principles of defect detection algorithms for highspeed wire surface images
6.4.1Experimental data
6.4.2Data augmentation
6.4.3Kmeans
6.4.4DIoUNMS
6.4.5Evaluation metrics for object detection
6.4.6Model training
6.5Deployment of defect detection algorithms for highspeed wire surface
6.5.1Introduction of hardware
6.5.2Technical introduction
6.5.3Software deployment
6.5.4Deployment effectiveness
References
展開全部
書友推薦
- >
我與地壇
- >
苦雨齋序跋文-周作人自編集
- >
【精裝繪本】畫給孩子的中國神話
- >
姑媽的寶刀
- >
羅曼·羅蘭讀書隨筆-精裝
- >
小考拉的故事-套裝共3冊
- >
自卑與超越
- >
朝聞道
本類暢銷