中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
大數據中極端問題的人工智能解決方案

包郵 大數據中極端問題的人工智能解決方案

作者:張軍英
出版社:西安電子科技大學出版社出版時間:2024-02-01
開本: 其他 頁數: 197
中 圖 價:¥37.3(7.6折) 定價  ¥49.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

大數據中極端問題的人工智能解決方案 版權信息

  • ISBN:9787560670928
  • 條形碼:9787560670928 ; 978-7-5606-7092-8
  • 裝幀:平裝-膠訂
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

大數據中極端問題的人工智能解決方案 內容簡介

Machine learning, as the most important technology and tool in artificial intelligence, has been successfully applied in solving various complex problems. After a brief introduction to the basic methods and algorithms of machine learning, this book collects artificial intelligence solutions for typical complex problems of wide range, such as handwritten digit recognition, radar automatic target recognition, computer-aided disease diagnosis, image filtering for images contaminated with heavy noises, gene expression heterogeneity correction, preeclampsia risk prediction, and some typical combinatorial optimization problems such as multi-constraint shortest path problem, traveling salesman problem, and so forth. The aim is to examine, through these cases, how to use machine learning technology to create effective methods and algorithms for solving complex problems, and which reveals enormous advantages and severe challenges of artificial intelligence technology.Machine learning, as the most important technology and tool in artificial intelligence, has been successfully applied in solving various complex problems. After a brief introduction to the basic methods and algorithms of machine learning, this book collects artificial intelligence solutions for typical complex problems of wide range, such as handwritten digit recognition, radar automatic target recognition, computer-aided disease diagnosis, image filtering for images contaminated with heavy noises, gene expression heterogeneity correction, preeclampsia risk prediction, and some typical combinatorial optimization problems such as multi-constraint shortest path problem, traveling salesman problem, and so forth. The aim is to examine, through these cases, how to use machine learning technology to create effective methods and algorithms for solving complex problems, and which reveals enormous advantages and severe challenges of artificial intelligence technology.
This book can serve as the textbook for undergraduates, graduate students and PhD students for related courses about machine learning and a reference for their research work in the majors of Computer Science, Artificial Intelligence, Automation and so forth in colleges and universities. It can also be a reference for researchers and engineers who are interested in machine learning and artificial intelligence.
機器學習作為人工智能*重要的技術和工具,已成功應用于解決各種復雜問題。本書在簡略介紹機器學習的基本方法與算法的基礎上,通過搜集典型復雜問題的人工智能解決方案,諸如手寫數字識別、雷達自動目標識別、癌癥診斷、超強噪聲污染情況下的圖像過濾、基因芯片異質性校正、孕婦子癇前期風險預測,以及一些典型的組合優化問題,如多約束*短路徑問題和旅行商問題等,考察如何運用機器學習技術,創造解決復雜問題的有效方法和算法,并通過這些案例窺視出人工智能技術的巨大優勢和其面臨的極其嚴峻的挑戰。
本書可作為本科生、研究生和博士生學習機器學習相關課程的教材,也可供高校計算機科學、人工智能、自動化等專業技術人員,以及對機器學習、人工智能感興趣的研究人員和工程師參考。

大數據中極端問題的人工智能解決方案 目錄

CHAPTER 1 Basics of Machine Learning 1.1 Problem statement and solution framework 1.2 Supervised learning 1.2.1 MLP 1.2.2 CNN 1.2.3 RBF network 1.2.4 SVM 1.2.5 Comments 1.3 Unsupervised learning 1.3.1 K-means 1.3.2 Self-organizing map 1.3.3 Comments 1.4 Representation learning 1.4.1 PCA 1.4.2 LDA 1.4.3 ICA 1.4.4 NMF 1.4.5 Comments References CHAPTER 2 Solving Multi-class Problems by Data-driven Topology-preservingOutput Codes 2.1 Think: Is complexity important? 2.2 Topology-preserving output code scheme 2.2.1 A first-place description 2.2.2 Definition of a TPOC map 2.2.3 TOP map learned from SOM 2.2.4 Learning algorithm for a TPOC map 2.2.5 An octa-phase-shift-keying (8-PSK) pattern example 2.3 Experimental results 2.3.1 Comparison of TPOC with DECOC 2.3.2 Comparison of TPOC with OAA 2.3.3 Comparison of TPOC with random code and natural code 2.3.4 Comparison of TPOC with q-TPOC scheme and ECOC scheme 2.3.5 Comparison of TPOC schemes with and without adaptive assignment of classifier complexity 2.3.6 Measured radar data classification with multiple SVM 2.4 Discussions 2.4.1 Advantages of TPOC over ECOC 2.4.2 Relation of TPOC to other related approaches 2.5 Summary Appendix Coding classes from a TPOC map Appendix 1 k-ary coding scheme: Using k-ary classifiers Appendix 2 Binary coding scheme: Using binary classifiers References CHAPTER 3 Robust Data Clustering by Learning Multi-metric Lq-norm Distances 3.1 Why distance measure is important? 3.2 Motivation for robust multi-metric clustering 3.3 Robust location estimation 3.3.1 RMML algorithm 3.3.2 Objective function 3.3.3 Non-Gaussianity measure of a mapped cluster 3.4 Robust outlier detection: ICSC algorithm 3.5 Experiments and results 3.5.1 Location estimation on alpha-stable mixture datasets 3.5.2 Comparisons of proposed RMML algorithm with typical robust clustering algorithms 3.5.3 Outlier detection on R-data and D-data 3.5.4 Experiments on Wisconsin Breast Cancer Dataset and on Lung Cancer Dataset 3.6 Discussions 3.7 Summary Appendix 1 CDM algorithm Appendix 2 Proof of Theorem 3.1 References CHAPTER 4 Minimum Resource Neural Network Framework for SolvingMulti-constraint Shortest Path Problems 4.1 Introduction 4.2 MRNN for solving time constraint shortest time path problems 4.2.1 Problem definitions 4.2.2 Neural network design 4.2.3 Algorithm for solving the ST-TW problem 4.2.4 Flexibility of the network 4.2.5 Properties of the network 4.3 MRNN for solving label-constraint shortest path problem 4.4 Computation complexity analysis 4.5 Experiments and results 4.5.1 Experiments on simulated data 4.5.2 Experiments on real city road maps 4.5.3 Experiments on vehicle routing problem with time windows 4.6 Summary Appendix Proof of properties of the TW-TW network References CHAPTER 5 Overall-Regional Competitive Self-Organizing Map for EuclideanTraveling Salesman Problem 5.1 Introduction 5.2 ORC-SOM neural network 5.2.1 Overall competition and regional competition: idea 5.2.2 Overall competition and regional competition: formation 5.2.3 ORC-SOM algorithm for the Euclidean TSP 5.3 Feasibility analysis 5.3.1 Neighborhood preservation and convex-hull properties 5.3.2 Infiltration property 5.4 Experiments and results 5.5 Summary References CHAPTER 6 Filtering Images Contaminated with Pep and Salt Type Noise with Pulse-coupled Neural Network 6.1 Introduction 6.2 PCNN model and its dynamic behaviour 6.2.1 Dynamics of an isolated neuron 6.2.2 Dynamics of connected neurons 6.3 Localization and filtering of noisy pixels 6.3.1 Basic idea 6.3.2 Localization of noisy pixels 6.3.3 Filtering noisy pixels with an adaptive median filter 6.3.4 Threshold function modifications for increasing noise intensity resolution 6.4 Comparison of the PCNN approach to conventional window-based image filtering method 6.5 Experiments and results 6.6 Summary References CHAPTER 7 Pattern Expression Non-negative Matrix Factorization for Blind Source Separation 7.1 Introduction 7.2 Pattern expression NMF and BSS for NNLM 7.2.1 Pattern basis 7.2.2 PE-NMF algorithm and its convergence 7.2.3 Initialization of the algorithm 7.3 Experiments and results 7.3.1 Extended BAR problem 7.3.2 Recovery of mixed signals 7.3.3 Heterogeneity correction of gene expression microarrays 7.4 Summary References CHAPTER 8 Risk Prediction of Preeclampsia Using Bi-platform Calibration and Machine Learning Algorithm 8.1 Introduction 8.2 Model training 8.2.1 Data sources 8.2.2 Framework of using machine learning approaches 8.2.3 Methods 8.2.4 Model learning and test 8.3 Results 8.3.1 Selecting prediction model 8.3.2 PE risk prediction with mono-platform or bi-platform data 8.3.3 Results on test set 8.3.4 Early PE risk prediction 8.4 Discussion 8.4.1 Feature importance ranking 8.4.2 Data augmentation using SMOTE-based algorithms 8.4.3 Virtually high performance phenomenon 8.5 Summary References CHAPTER 9 The Future of AI: MI 9.1 Most published research findings are false: reproducibility crisis 9.2 Making claims using p-value and/or alternatives 9.3 Why most published research findings are false? 9.3.1 The p-value fallacy 9.3.2 Influential factors to irreproducibility 9.4 Challenges in learning theory and methods 9.4.1 How to define reproducibility 9.4.2 Learning from incomplete data 9.4.3 What to learn and how to assess: reproducibility 9.4.4 How to learn: learning strategy 9.5 From AI to MI 9.5.1 Comparison of AI and MI 9.5.2 Predicting the ultimate uses of MI is hard 9.5.3 MI: the future References
展開全部
商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 湖南专升本-湖南省专升本报名-湖南统招专升本考试网 | 北京西风东韵品牌与包装设计公司,创造视觉销售力! | 陕西安玻璃自动感应门-自动重叠门-磁悬浮平开门厂家【捷申达门业】 | 防水套管-柔性防水套管-刚性防水套管-上海执品管件有限公司 | 假肢-假肢价格-假肢厂家-河南假肢-郑州市力康假肢矫形器有限公司 | 清洁设备_洗地机/扫地机厂家_全自动洗地机_橙犀清洁设备官网 | 棉柔巾代加工_洗脸巾oem_一次性毛巾_浴巾生产厂家-杭州禾壹卫品科技有限公司 | 在线浊度仪_悬浮物污泥浓度计_超声波泥位计_污泥界面仪_泥水界面仪-无锡蓝拓仪表科技有限公司 | 120kv/2mA直流高压发生器-60kv/2mA-30kva/50kv工频耐压试验装置-旭明电工 | 防勒索软件_数据防泄密_Trellix(原McAfee)核心代理商_Trellix(原Fireeye)售后-广州文智信息科技有限公司 | 老房子翻新装修,旧房墙面翻新,房屋防水补漏,厨房卫生间改造,室内装潢装修公司 - 一修房屋快修官网 | 成都办公室装修-办公室设计-写字楼装修设计-厂房装修-四川和信建筑装饰工程有限公司 | 车间除尘设备,VOCs废气处理,工业涂装流水线,伸缩式喷漆房,自动喷砂房,沸石转轮浓缩吸附,机器人喷粉线-山东创杰智慧 | 台湾Apex减速机_APEX行星减速机_台湾精锐减速机厂家代理【现货】-杭州摩森机电 | 干式磁选机_湿式磁选机_粉体除铁器-潍坊国铭矿山设备有限公司 | 温州中研白癜风专科_温州治疗白癜风_温州治疗白癜风医院哪家好_温州哪里治疗白癜风 | 软文发布平台 - 云软媒网络软文直编发布营销推广平台 | 螺旋丝杆升降机-SWL蜗轮-滚珠丝杆升降机厂家-山东明泰传动机械有限公司 | 标准品网_标准品信息网_【中检计量】 | 美国HASKEL增压泵-伊莱科elettrotec流量开关-上海方未机械设备有限公司 | PTFE接头|聚四氟乙烯螺丝|阀门|薄膜|消解罐|聚四氟乙烯球-嘉兴市方圆氟塑制品有限公司 | 免联考国际MBA_在职MBA报考条件/科目/排名-MBA信息网 | 对夹式止回阀_对夹式蝶形止回阀_对夹式软密封止回阀_超薄型止回阀_不锈钢底阀-温州上炬阀门科技有限公司 | 北京银联移动POS机办理_收银POS机_智能pos机_刷卡机_收银系统_个人POS机-谷骐科技【官网】 | 首页|光催化反应器_平行反应仪_光化学反应仪-北京普林塞斯科技有限公司 | 工业冷却塔维修厂家_方形不锈钢工业凉水塔维修改造方案-广东康明节能空调有限公司 | 能量回馈_制动单元_电梯节能_能耗制动_深圳市合兴加能科技有限公司 | 济南品牌包装设计公司_济南VI标志设计公司_山东锐尚文化传播 | 四探针电阻率测试仪-振实密度仪-粉末流动性测定仪-宁波瑞柯微智能 | 低压载波电能表-单相导轨式电能表-华邦电力科技股份有限公司-智能物联网综合管理平台 | 网站建设-临朐爱采购-抖音运营-山东兆通网络科技 | 吨袋包装机|吨包秤|吨包机|集装袋包装机-烟台华恩科技 | 体检车_移动CT车_CT检查车_CT车_深圳市艾克瑞电气有限公司移动CT体检车厂家-深圳市艾克瑞电气有限公司 | 杭州代理记账费用-公司注销需要多久-公司变更监事_杭州福道财务管理咨询有限公司 | 苏州教学设备-化工教学设备-环境工程教学模型|同科教仪 | 上海乾拓贸易有限公司-日本SMC电磁阀_德国FESTO电磁阀_德国FESTO气缸 | 手术室净化厂家-成都做医院净化工程的公司-四川华锐-15年特殊科室建设经验 | 威海防火彩钢板,威海岩棉复合板,威海彩钢瓦-文登区九龙岩棉复合板厂 | 高楼航空障碍灯厂家哪家好_航空障碍灯厂家_广州北斗星障碍灯有限公司 | 自动部分收集器,进口无油隔膜真空泵,SPME固相微萃取头-上海楚定分析仪器有限公司 | 三效蒸发器_多效蒸发器价格_四效三效蒸发器厂家-青岛康景辉 |