掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
公路車寶典(ZINN的公路車維修與保養秘籍)
-
>
晶體管電路設計(下)
-
>
基于個性化設計策略的智能交通系統關鍵技術
-
>
花樣百出:貴州少數民族圖案填色
-
>
山東教育出版社有限公司技術轉移與技術創新歷史叢書中國高等技術教育的蘇化(1949—1961)以北京地區為中心
-
>
鐵路機車概要.交流傳動內燃.電力機車
-
>
利維坦的道德困境:早期現代政治哲學的問題與脈絡
隧道突水突泥致災系統及孕災評判(英文版) 版權信息
- ISBN:9787030770684
- 條形碼:9787030770684 ; 978-7-03-077068-4
- 裝幀:圓脊精裝
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
隧道突水突泥致災系統及孕災評判(英文版) 內容簡介
本書共分八章,介紹了作者十余年來在隧道突水突泥致災系統與孕災評判方面取得的研究與應用成果。本書通過大量的案例調研與分析,在已有研究的基礎上,提出了3類11型隧道突水突泥致災系統和4種典型突水突泥孕災模式,研究了隧道突水突泥致災系統典型案例,論述了巖溶水系統類型、結構特征、宏觀地質判識、工程識別、巖溶隧道選線原則與評價方法,形成了隧道突水突泥施工風險區間動態評估方法,建立了隧道突水突泥抗突評判方法,提出了集地質識別、物探識別和鉆探識別為一體的隧道突水突泥致災系統識別方法,構建了隧道突水突泥案例動態管理與分析平臺。
隧道突水突泥致災系統及孕災評判(英文版) 目錄
Preface
Chapter 1 Introduction
1.1 Background and Significance of Research on Water and Mud Inrush in Tunnels
1.2 Water and Mud Inrush Hazard-causing System and Resistance Body
1.2.1 Water and mud inrush hazard-causing system
1.2.2 Resistance body
1.3 Research on the Hazard-causing System of Water and Mud Inrush in Tunnels
1.4 Summary of Research on Construction Risk Dynamic Evaluation of Tunnel Water and Mud Inrush
1.5 Summary of Research on Identification Methods of Tunnel Water and Mud Inrush Hazard-causing System
Chapter 2 Classification and Geological Identification of Water and Mud Inrush Hazard-causing Systems in Tunnels
2.1 Karst-category of Hazard-causing System
2.1.1 Corrosion fissure type
2.1.2 Karst cave type
2.1.3 Pipe and underground river type
2.2 Fault-category of Hazard-causing System
2.2.1 Water-enrich fault type
2.2.2 Water-conductive fault type
2.2.3 Water-resistant fault type
2.3 Other-categoryofHazard-causing System
2.3.1 Intrusive contact type
2.3.2 Structural fissure type
2.3.3 Unconformable contact type
2.3.4 Differential weathering type
2.3.5 Special condition type
2.4 Disaster-forming Pattern of Water and Mud Inrush Hazards in Tunnels
2.4.1 Directly revealed type of water and mud inrush
2.4.2 Progressive failure type of water and mud inrush
2.4.3 Seepage instability type of water and mud inrush
2.4.4 Intermittent failure type of water and mud inrush
2.5 Summary
Chapter 3 Typical Cases and Analysis of Water and Mud Inrush in Tunnels
3.1 Typical Cases of Water and Mud Inrush in Karst-category Hazard-causing System
3.1.1 Typical case of corrosion fissure type water and mud inrush--Qiyueshan Tunnel of Lichuan-Wanzhou Expressway
3.1.2 Typical case of karst cave type water and mud inrush--Daba Tunnel of Longshan-Yongshun Highway
3.1.3 Typical case of pipe and underground river type water and mud inrush--Qiyueshan Tunnel of Shanghai-Chengdu West Highway
3.2 Typical Cases of Water and Mud Inrush in Fault-category Hazard-causing System
3.2.1 Typical case of water-enrich fault type water and mud inrush--Baiyun Tunnel of Nanning-Guangzhou Railway
3.2.2 Typical case of water-conductive fault type water and mud inrush--Yonglian Tunnel of Jfan-Lianhua Expressway
3.2.3 Typical case of water-resistant fault type water and mud inrush--Qiyueshan Tunnel of Yichang-Wanzhou Railway
3.3 Typical Cases of Water and Mud Inrush in Other-category Hazard-causing System
3.3.1 Typical case of intrusive contact type water and mud inrush--Xiangyun Tunnel of Guangtong-Dali Railway
3.3.2 Typical cases of structural fissure type water and mud inrush
3.3.3 Typical case of unconformable contact type water and mud inrush--Changlashan Tunnel of Qinghai Provincial Highway
3.3.4 Typical case of differential weathering type water and mud inrush--Junchang Tunnel of Cenxi- Shuiwen Highway
3.3.5 Typical cases of special condition type water and mud inrush
3.4 Summary
Chapter 4 Tunnel Route Selection in Karst Region
4.1 Underground River System
4.1.1 Underground river system structural characteristics and its macro-geological identification
4.1.2 Engineering identification of underground river systems
4.1.3 The influence of the underground river system on tunnel route selection
4.1.4 Principles of tunnel route selection in the underground river system
4.2 Karst Spring System
4.2.1 Karst spring system structural characteristics and its macro-geological identification
4.2.2 Engineering identification ofkarst spring systems
4.2.3 The influence ofkarst spring systems on tunnel route selection
4.2.4 Principles of tunnel route selection in karst spring system
4.3 Dispersed Drainage Karst Water System
4.4 Evaluation of Karst Tunnel Route Selection
4.4.1 Evaluation model for karst tunnel route selection
4.4.2 Evaluation factors and weight analysis ofkarst tunnel route selection
4.4.3 The complete hierarchical order
4.4.4 Grading criteria
4.5 Engineering Application
4.5.1 Project overview
4.5.2 The development characteristics of underground rivers in the tunnel area
4.5.3 Engineering analogy
4.5.4 Tracer test
4.5.5 Geophysical prospecting and investigation inside the tunnel
4.5.6 Evaluation ofkarst tunnel route selection
4.6 Summary
Chapter 5 A Dynamic Interval Risk Assessment Method for Water and Mud Inrush during Tunnel Construction
5.1 Risk Assessment Conceptual Model and Index Rating
5.1.1 Hydrogeology and geological engineering conditions
5.1.2 Tunnel construction factors
5.1.3 Dynamic feedback of construction information
5.2 Fuzzy Evaluation of Water and Mud Inrush Interval Risk
5.2.1 Construction of interval risk calculation model
5.2.2 Interval risk membership calculation
5.2.3 Interval factor weight analysis
5.2.4 Relative dominance analysis of interval matrix
5.3 Tunnel Construction Permit Mechanism and Risk Management
5.3.1 Construction permit mechanism and risk management
5.3.2 Implementation procedures of the construction permit mechanism and risk management
5.3.3 Principle of construction permit mechanism
5.4 Case Study of the Qiyueshan Tunnel: Dynamic Evaluation and Control of Water and Mud Inrush Risk
5.4.1 Preliminary assessment
5.4.2 Secondary assessment
5.4.3 Dynamic assessment
5.5 Summary
Chapter 6 Assessment Method of the Resistance Body against Water and Mud Inrush in Tunnels
6.1 Influencing Factors of the Resistance Body Stability
6.1.1 Influencing factors of the disaster source
6.1.2 Influencing factors of the resistance body
6.2 Establishment of the Resistance Body Assessment Method
6.3 Grading and Scoring of Factors Affecting the Resistance Body Stability
6.3.1 Grading and scoring of factors affecting disaster source
6.3.2 Grading and scoring of factors affecting resistance body
6.4 Implementation Procedure of the Resistance Body Assessment
6.5 Engineering Verification
6.6 Summary
Chapter 7 Recognition Methods for Hazard-causing Systems of Water and Mud Inrush in Tunnels
7.1 Implementation of the Recognition Method for Water and Mud Inrush Hazard-causing System
7.1.1 Implementation process
7.1.2 Implementation principles
7.2 Typical Hazard-causing System Characteristics
7.2.1 Geological recognition
7.2.2 Geophysical prospecting recognition
7.2.3 Drilling recognition
7.3 Engineering Application
7.3.1 Project overview
7.3.2 Geological recognition
7.3.3 Geophysical recognition
7.4 Summary
Chapter 8 Dynamic Management and Analysis Platform for Tunnel Water and Mud Inrush Cases
8.1 Design Objectives and Requirements of the Case Management and Analysis Platform
8.1.1 Design objectives of the platform
8.1.2 General requirements for platform design
8.2 System Development Procedure
8.3 Platform Composition and Architecture
8.3.1 Platform composition
8.3.2 B/S architecture
8.4 Main Functions of the System
8.4.1 User authentication login
8.4.2 Case display, retrieval, and download
8.4.3 Case submission
8.4.4 Case review
8.4.5 Case comment
8.4.6 Case analysis
8.5 Summary
References
Appendix
展開全部
書友推薦
- >
山海經
- >
朝聞道
- >
有舍有得是人生
- >
推拿
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術叢書(紅燭學術叢書)
- >
羅庸西南聯大授課錄
- >
唐代進士錄
- >
史學評論
本類暢銷