中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
細說PYTORCH深度學習:理論、算法、模型與編程實現

包郵 細說PYTORCH深度學習:理論、算法、模型與編程實現

出版社:清華大學出版社出版時間:2023-06-01
開本: 其他 頁數: 332
中 圖 價:¥69.3(7.0折) 定價  ¥99.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

細說PYTORCH深度學習:理論、算法、模型與編程實現 版權信息

  • ISBN:9787302631941
  • 條形碼:9787302631941 ; 978-7-302-63194-1
  • 裝幀:平裝-膠訂
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

細說PYTORCH深度學習:理論、算法、模型與編程實現 本書特色

《細說PyTorch深度學習:理論、算法、模型與編程實現》由業界人工智能專家執筆,圖文并茂,娓娓道來。
兼備理論與實踐,理論講解細致,實踐案例豐富。
近百個教學示例及代碼實現,6大深度學習熱點應用。
以Python為編程語言,兼顧前沿技術,適合對PyTorch感興趣的各層次讀者閱讀。

細說PYTORCH深度學習:理論、算法、模型與編程實現 內容簡介

《細說PyTorch深度學習:理論、算法、模型與編程實現》由業界專家編撰,采用理論描述加代碼實踐的思路,詳細介紹PyTorch的理論知識及其在深度學習中的應用。全書分為兩篇,共16章。**篇為基礎知識,主要介紹PyTorch的基本知識、構建開發環境、卷積網絡、經典網絡、模型保存和調用、網絡可視化、數據加載和預處理、數據增強等內容;第二篇為高級應用,主要介紹數據分類、遷移學習、人臉檢測和識別、生成對抗網絡、目標檢測、ViT等內容。本書內容涵蓋PyTorch從入門到深度學習的各個方面,是一本基礎應用與案例實操相結合的參考書。 《細說PyTorch深度學習:理論、算法、模型與編程實現》理論兼備實例,深入淺出,適合PyTorch初學者使用,也可以作為理工科高等院校本科生、研究生的教學用書,還可作為相關科研工程技術人員的參考書。

細說PYTORCH深度學習:理論、算法、模型與編程實現 目錄

第1篇 基礎知識
第1章 人工智能和PyTorch2
1.1 人工智能和深度學習2
1.1.1 人工智能2
1.1.2 深度學習3
1.2 深度學習框架5
1.3 PyTorch7
1.3.1 PyTorch簡介7
1.3.2 PyTorch的應用領域9
1.3.3 PyTorch的應用前景10
1.4 小結12
第2章 開發環境13
2.1 PyTorch的安裝13
2.2 NumPy16
2.2.1 NumPy的安裝與查看17
2.2.2 NumPy對象17
2.2.3 數組21
2.2.4 數學計算26
2.3 Matplotlib32
2.3.1 Matplotlib的安裝和簡介33
2.3.2 Matplotlib Figure圖形對象35
2.4 Scikit-Learn47
2.5 小結48
第3章 PyTorch入門49
3.1 PyTorch的模塊49
3.1.1 主要模塊49
3.1.2 輔助模塊53
3.2 張量54
3.2.1 張量的數據類型55
3.2.2 創建張量56
3.2.3 張量存儲61
3.2.4 維度操作63
3.2.5 索引和切片65
3.2.6 張量運算67
3.3 torch.nn模塊76
3.3.1 卷積層76
3.3.2 池化層80
3.3.3 激活層87
3.3.4 全連接層91
3.4 自動求導92
3.5 小結95
第4章 卷積網絡96
4.1 卷積網絡的原理96
4.1.1 卷積運算96
4.1.2 卷積網絡與深度學習98
4.2 NumPy建立神經網絡99
4.3 PyTorch建立神經網絡101
4.3.1 建立兩層神經網絡101
4.3.2 神經網絡參數更新102
4.3.3 自定義PyTorch的nn模塊103
4.3.4 權重共享105
4.4 全連接網絡107
4.5 小結111
第5章 經典神經網絡112
5.1 VGGNet112
5.1.1 VGGNet的結構112
5.1.2 實現過程114
5.1.3 VGGNet的特點115
5.1.4 查看PyTorch網絡結構116
5.2 ResNet118
5.2.1 ResNet的結構118
5.2.2 殘差模塊的實現120
5.2.3 ResNet的實現122
5.2.4 ResNet要解決的問題126
5.3 XceptionNet128
5.3.1 XceptionNet的結構128
5.3.2 XceptionNet的實現131
5.4 小結135
第6章 模型的保存和調用136
6.1 字典狀態(state_dict)136
6.2 保存和加載模型138
6.2.1 使用ate_dict加載模型138
6.2.2 保存和加載完整模型139
6.2.3 保存和加載Checkpoint用于推理、繼續訓練139
6.3 一個文件保存多個模型140
6.4 通過設備保存和加載模型141
6.5 小結143
第7章 網絡可視化144
7.1 HiddenLayer可視化144
7.2 PyTorchViz可視化146
7.3 TensorboardX可視化149
7.3.1 簡介和安裝149
7.3.2 使用TensorboardX150
7.3.3 添加數字151
7.3.4 添加圖片152
7.3.5 添加直方圖153
7.3.6 添加嵌入向量154
7.4 小結156
第8章 數據加載和預處理157
8.1 加載PyTorch庫數據集157
8.2 加載自定義數據集159
8.2.1 下載并查看數據集159
8.2.2 定義數據集類161
8.3 預處理164
8.4 小結168
第9章 數據增強169
9.1 數據增強的概念169
9.1.1 常見的數據增強方法170
9.1.2 常用的數據增強庫171
9.2 數據增強的實現172
9.2.1 中心裁剪173
9.2.2 隨機裁剪174
9.2.3 縮放175
9.2.4 水平翻轉176
9.2.5 垂直翻轉177
9.2.6 隨機角度旋轉178
9.2.7 色度、亮度、飽和度、對比度的變化179
9.2.8 隨機灰度化180
9.2.9 將圖形加上padding181
9.2.10 指定區域擦除182
9.2.11 伽馬變換183
9.3 小結184
第2篇 高級應用
第10章 圖像分類186
10.1 CIFAR10數據分類186
10.1.1 定義網絡訓練數據187
10.1.2 驗證訓練結果192
10.2 數據集劃分193
10.3 貓狗分類實戰195
10.3.1 貓狗數據預處理195
10.3.2 建立網絡貓狗分類196
10.4 小結199
第11章 遷移學習200
11.1 定義和方法200
11.2 螞蟻和蜜蜂分類實戰202
11.2.1 加載數據202
11.2.2 定義訓練方法204
11.2.3 可視化預測結果205
11.2.4 遷移學習方法一:微調網絡206
11.2.5 遷移學習方法二:特征提取器208
11.3 小結209
第12章 人臉檢測和識別210
12.1 人臉檢測210
12.1.1 定義和研究現狀210
12.1.2 經典算法213
12.1.3 應用領域216
12.2 人臉識別217
12.2.1 定義和研究現狀217
12.2.2 經典算法220
12.2.3 應用領域221
12.3 人臉檢測與識別實戰222
12.3.1 Dlib人臉檢測222
12.3.2 基于MTCNN的人臉識別225
12.4 小結227
第13章 生成對抗網絡228
13.1 生成對抗網絡簡介228
13.2 數學模型230
13.3 生成手寫體數字圖片實戰233
13.3.1 基本網絡結構233
13.3.2 準備數據234
13.3.3 定義網絡和訓練235
13.3.4 生成結果分析237
13.4 生成人像圖片實戰238
13.4.1 DCGAN簡介239
13.4.2 數據準備239
13.4.3 生成對抗網絡的實現241
13.5 小結250
第14章 目標檢測251
14.1 目標檢測概述251
14.1.1 傳統目標檢測算法的研究現狀252
14.1.2 深度學習目標檢測算法的研究現狀252
14.1.3 應用領域253
14.2 檢測算法模型253
14.2.1 傳統的目標檢測模型253
14.2.2 基于深度學習的目標檢測模型255
14.3 目標檢測的基本概念259
14.3.1 IoU259
14.3.2 NMS261
14.4 Faster R-CNN目標檢測264
14.4.1 網絡原理265
14.4.2 實戰269
14.5 小結273
第15章 圖像風格遷移274
15.1 風格遷移概述274
15.2 固定風格固定內容的遷移277
15.2.1 固定風格固定內容遷移的原理277
15.2.2 PyTorch實現固定風格遷移280
15.3 快速風格遷移288
15.3.1 快速遷移模型的原理288
15.3.2 PyTorch實現快速風格遷移290
15.4 小結297
第16章 ViT298
16.1 ViT詳解298
16.1.1 Transformer模型中的Attention注意力機制298
16.1.2 視覺Transformer模型詳解302
16.2 ViT圖像分類實戰305
16.2.1 數據準備305
16.2.2 定義ViT模型306
16.2.3 定義工具函數311
16.2.4 定義訓練過程314
16.2.5 運行結果317
16.3 小結318
參考文獻319
展開全部

細說PYTORCH深度學習:理論、算法、模型與編程實現 作者簡介

凌峰,畢業于中國科學院大學,博士,從事機器學習、人工智能、圖像處理和計算視覺的研究 與開發工作多年,發表多篇論文,擁有豐富的機器學習算法實現經驗。 丁麒文,研究生畢業,主要從事圖像處理、機器學習、人工智能和機器視覺領域的研究工作, 熟練運用基于Pytorch、TensorFlow等深度學習框架實現相關圖像處理算法,并發表了多篇論文 。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 定硫仪,量热仪,工业分析仪,马弗炉,煤炭化验设备厂家,煤质化验仪器,焦炭化验设备鹤壁大德煤质工业分析仪,氟氯测定仪 | 台湾HIWIN上银直线模组|导轨滑块|TBI滚珠丝杆丝杠-深圳汉工 | 3d可视化建模_三维展示_产品3d互动数字营销_三维动画制作_3D虚拟商城 【商迪3D】三维展示服务商 广东健伦体育发展有限公司-体育工程配套及销售运动器材的体育用品服务商 | 帽子厂家_帽子工厂_帽子定做_义乌帽厂_帽厂_制帽厂_帽子厂_浙江高普制帽厂 | 上海电子秤厂家,电子秤厂家价格,上海吊秤厂家,吊秤供应价格-上海佳宜电子科技有限公司 | 山东臭氧发生器,臭氧发生器厂家-山东瑞华环保设备 | 气动|电动调节阀|球阀|蝶阀-自力式调节阀-上海渠工阀门管道工程有限公司 | 「银杏树」银杏树行情价格_银杏树种植_山东程锦园林 | 非标压力容器_碳钢储罐_不锈钢_搪玻璃反应釜厂家-山东首丰智能环保装备有限公司 | 全自动真空上料机_粉末真空上料机_气动真空上料机-南京奥威环保科技设备有限公司 | 渣土车电机,太阳能跟踪器电机,蜗轮蜗杆减速电机厂家-淄博传强电机 | 美缝剂_美缝剂厂家_美缝剂加盟-地老板高端瓷砖美缝剂 | 温控器生产厂家-提供温度开关/热保护器定制与批发-惠州市华恺威电子科技有限公司 | 优考试_免费在线考试系统_培训考试系统_题库系统_组卷答题系统_匡优考试 | 托盘租赁_塑料托盘租赁_托盘出租_栈板出租_青岛托盘租赁-优胜必达 | 节流截止放空阀-不锈钢阀门-气动|电动截止阀-鸿华阀门有限公司 | 哈尔滨发电机,黑龙江柴油发电机组-北方星光 | 钢制拖链生产厂家-全封闭钢制拖链-能源钢铝拖链-工程塑料拖链-河北汉洋机械制造有限公司 | 广西绿桂涂料--承接隔热涂料、隔音涂料、真石漆、多彩仿石漆等涂料工程双包施工 | 杭州代理记账多少钱-注册公司代办-公司注销流程及费用-杭州福道财务管理咨询有限公司 | 台式恒温摇床价格_大容量恒温摇床厂家-上海量壹科学仪器有限公司 | 透平油真空滤油机-变压器油板框滤油机-滤油车-华之源过滤设备 | 工业机械三维动画制作 环保设备原理三维演示动画 自动化装配产线三维动画制作公司-南京燃动数字 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 | 广州工业氧气-工业氩气-工业氮气-二氧化碳-广州市番禺区得力气体经营部 | 鲁网 - 山东省重点新闻网站,山东第一财经门户 | 生物风-销售载体,基因,质粒,ATCC细胞,ATCC菌株等,欢迎购买-百风生物 | 沈阳液压泵_沈阳液压阀_沈阳液压站-沈阳海德太科液压设备有限公司 | ?水马注水围挡_塑料注水围挡_防撞桶-常州瑞轩水马注水围挡有限公司 | FFU_空气初效|中效|高效过滤器_空调过滤网-广州梓净净化设备有限公司 | 直齿驱动-新型回转驱动和回转支承解决方案提供商-不二传动 | 【铜排折弯机,钢丝折弯成型机,汽车发泡钢丝折弯机,线材折弯机厂家,线材成型机,铁线折弯机】贝朗折弯机厂家_东莞市贝朗自动化设备有限公司 | sus630/303cu不锈钢棒,440C/430F/17-4ph不锈钢研磨棒-江苏德镍金属科技有限公司 | 污水处理设备维修_污水处理工程改造_机械格栅_过滤设备_气浮设备_刮吸泥机_污泥浓缩罐_污水处理设备_污水处理工程-北京龙泉新禹科技有限公司 | 高精度电阻回路测试仪-回路直流电阻测试仪-武汉特高压电力科技有限公司 | 槽钢冲孔机,槽钢三面冲,带钢冲孔机-山东兴田阳光智能装备股份有限公司 | 集装箱展厅-住人集装箱住宿|建筑|房屋|集装箱售楼处-山东锐嘉科技工程有限公司 | 胀套-锁紧盘-风电锁紧盘-蛇形联轴器「厂家」-瑞安市宝德隆机械配件有限公司 | 翰墨AI智能写作助手官网_人工智能问答在线AI写作免费一键生成 | 冲锋衣滑雪服厂家-冲锋衣定制工厂-滑雪服加工厂-广东睿牛户外(S-GERT) | 驾驶人在线_专业学车门户网站| 空调风机,低噪声离心式通风机,不锈钢防爆风机,前倾皮带传动风机,后倾空调风机-山东捷风风机有限公司 |