掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
Scikit-Learn、Keras和TensorFlow的機器學習實用指南 第3版(影印版) 版權信息
- ISBN:9787576605945
- 條形碼:9787576605945 ; 978-7-5766-0594-5
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
Scikit-Learn、Keras和TensorFlow的機器學習實用指南 第3版(影印版) 內容簡介
通過一系列近期新的技術突破,深度學習推動了整個機器學習領域的發展,F在,即使是對這項技術幾乎一無所知的程序員也可以使用簡單、高效的工具來實現具備數據學習能力的程序。這本暢銷書采用具體示例、*小化理論和生產就緒的Python框架(Scikit-Learn、Keras和TensorFlow)來幫助你直觀地理解構建智能系統的概念和工具。在更新的第3版中,作者Aurélien Géron探究了一系列技術,從簡單的線性回歸開始,逐步推進到深度神經網絡。書中的大量代碼示例和練習有助于你學以致用。你需要具備一定的編程經驗。
Scikit-Learn、Keras和TensorFlow的機器學習實用指南 第3版(影印版) 目錄
Preface
Part Ⅰ.The Fundamentals of Machine Learning
1.TheMachine Learning Landscape
What Is Machine Learning
Whr Use Machine Learning
Examples of Applications
Types of Machine Learning Systems
Training Supervision
Batch Versus Online Learning
Instance Based Versus Model Based Learning
Main Challenges of Machine Learning
Insufficient Quantity of Training Data
NonrepresentatiVe Training Data
Poor-Quality Data
Irrelevant Features
Overfitting the Training Data
Underfitting the Training Data
Stepping Back
Testing and Validating
Hyperparameter Tuning and Model Selection
Data Mismatch
Exercises
2.End-to-End Machine Learning Project
Working with Real Data
Look at the Big Picture
Frame the Problem
Select a Performance Measure
Check the Assumptions
Get the Data
Running the Code Examples Using Google Colab
Saving Your Code Changes and Your Data
The Power and Danger of Interactivity
Book Code Versus Notebook Code
Download the Data
Take a Quick Look at the Data Structure
Create a 11est Set
Explore and Visualize the Data to Gain Insights
Visualizing Geographical Data
Look for Correlations
Experiment with Attribute Combinations
Prepare the Data for Machine Learning Algorithms
Clean the Data
Handling Text and Categorical Attributes
Feature Scaling and Transformation
Custom Transformers
Transformation Pipelines
Select and Train a Model
Train and Evaluate on the Training Set
Better Evaluation Using Cross-Validation
Fine-Tune Your Model
Grid Search
Randomized Search
Ensemble Methods
Analyzing the Best Models and Their Errors
Evaluate Your System on the Test Set
Launch,Monitor,and Maintain Your System
TryItout
Exercises
3.Classification
MNIST
Training a Binary Classifier
Performance Measures
Measuring Accuracy Using Cross-Validation
Confusion Matrices
Precision and Recall
The Precision/Recall Trade-off
The ROC Curve
Multiclass Classification
Error Analysis
Multilabel Classification
Multioutput Classification
Exercises
……
Part Ⅱ Neural Networks and Deep Learning
A.Machine Learning Project Checklist
B.Autodiff
C.SpecialData Structures
D.TensorFIowGraphs
lndex
Part Ⅰ.The Fundamentals of Machine Learning
1.TheMachine Learning Landscape
What Is Machine Learning
Whr Use Machine Learning
Examples of Applications
Types of Machine Learning Systems
Training Supervision
Batch Versus Online Learning
Instance Based Versus Model Based Learning
Main Challenges of Machine Learning
Insufficient Quantity of Training Data
NonrepresentatiVe Training Data
Poor-Quality Data
Irrelevant Features
Overfitting the Training Data
Underfitting the Training Data
Stepping Back
Testing and Validating
Hyperparameter Tuning and Model Selection
Data Mismatch
Exercises
2.End-to-End Machine Learning Project
Working with Real Data
Look at the Big Picture
Frame the Problem
Select a Performance Measure
Check the Assumptions
Get the Data
Running the Code Examples Using Google Colab
Saving Your Code Changes and Your Data
The Power and Danger of Interactivity
Book Code Versus Notebook Code
Download the Data
Take a Quick Look at the Data Structure
Create a 11est Set
Explore and Visualize the Data to Gain Insights
Visualizing Geographical Data
Look for Correlations
Experiment with Attribute Combinations
Prepare the Data for Machine Learning Algorithms
Clean the Data
Handling Text and Categorical Attributes
Feature Scaling and Transformation
Custom Transformers
Transformation Pipelines
Select and Train a Model
Train and Evaluate on the Training Set
Better Evaluation Using Cross-Validation
Fine-Tune Your Model
Grid Search
Randomized Search
Ensemble Methods
Analyzing the Best Models and Their Errors
Evaluate Your System on the Test Set
Launch,Monitor,and Maintain Your System
TryItout
Exercises
3.Classification
MNIST
Training a Binary Classifier
Performance Measures
Measuring Accuracy Using Cross-Validation
Confusion Matrices
Precision and Recall
The Precision/Recall Trade-off
The ROC Curve
Multiclass Classification
Error Analysis
Multilabel Classification
Multioutput Classification
Exercises
……
Part Ⅱ Neural Networks and Deep Learning
A.Machine Learning Project Checklist
B.Autodiff
C.SpecialData Structures
D.TensorFIowGraphs
lndex
展開全部
Scikit-Learn、Keras和TensorFlow的機器學習實用指南 第3版(影印版) 作者簡介
奧雷利安·吉翁是一名機器學習顧問。作為一名前Google職員,在2013至2016年間,他領導了YouTube視頻分類團隊。在2002至2012年間,他是法國主要的無線ISP Wifirst的創始人和CT0,在2001年他還是Polyconseil的創始人和CT0,這家公司現在管理著電動汽車共享服務Autolib。
書友推薦
- >
月亮虎
- >
回憶愛瑪儂
- >
經典常談
- >
朝聞道
- >
羅曼·羅蘭讀書隨筆-精裝
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術叢書(紅燭學術叢書)
- >
有舍有得是人生
- >
巴金-再思錄
本類暢銷