中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
基于TensorFlow的圖像生成

包郵 基于TensorFlow的圖像生成

出版社:電子工業出版社出版時間:2022-10-01
開本: 其他 頁數: 248
中 圖 價:¥43.7(4.9折) 定價  ¥89.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
溫馨提示:5折以下圖書主要為出版社尾貨,大部分為全新(有塑封/無塑封),個別圖書品相8-9成新、切口
有劃線標記、光盤等附件不全詳細品相說明>>
本類五星書更多>

基于TensorFlow的圖像生成 版權信息

  • ISBN:9787121443473
  • 條形碼:9787121443473 ; 978-7-121-44347-3
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

基于TensorFlow的圖像生成 內容簡介

本書是一本使用深度學習生成圖像和視頻的實用指南。書中深入淺出地介紹了基于TensorFlow生成圖像的基本原理。本書有三部分共10章,**部分介紹使用TensorFlow生成圖像的基本知識,包括概率模型、自動編碼器和生成對抗網絡(GAN);第二部分通過一些應用程序案例介紹具體的圖像生成模型,包括圖像到圖像轉換技術、風格轉換和人工智能(AI)畫家案例;第三部分介紹生成對抗網絡的具體應用,包括高保真面孔生成、圖像生成的自我關注和視頻合成。本書內容詳盡、案例豐富,通過閱讀本書,讀者不僅可以理解基于TensorFlow生成圖像的基本原理,還可以真正掌握圖像生成的技能。本書適合圖像處理、計算機視覺和機器學習等專業的本科生、研究生及相關技術人員閱讀參考。

基于TensorFlow的圖像生成 目錄

目 錄
第1篇 TensorFlow生成圖像的基本原理
第1章 開始使用TensorFlow生成圖像 2
1.1 技術要求 2
1.2 理解概率 2
1.2.1 概率分布 3
1.2.2 預測置信度 4
1.2.3 像素的聯合概率 4
1.3 用概率模型生成人臉 7
1.3.1 創建面孔 7
1.3.2 條件概率 9
1.3.3 概率生成模型 10
1.3.4 參數化建模 12
1.4 從零開始構建PixelCNN模型 13
1.4.1 自回歸模型 14
1.4.2 PixelRNN 14
1.4.3 使用TensorFlow 2構建PixelCNN模型 14
1.5 本章小結 21
第2章 變分自編碼器 22
2.1 技術要求 22
2.2 用自編碼器學習潛在變量 22
2.2.1 編碼器 23
2.2.2 解碼器 26
2.2.3 構建自編碼器 28
2.2.4 從潛在變量生成圖像 29
2.3 變分自編碼器 31
2.3.1 高斯分布 31
2.3.2 采樣潛在變量 33
2.3.3 損失函數 36
2.4 用變分自編碼器生成人臉 38
2.4.1 網絡體系結構 38
2.4.2 面部重建 39
2.4.3 生成新面孔 40
2.4.4 采樣技巧 40
2.5 控制面部屬性 42
2.5.1 潛在空間運算 42
2.5.2 尋找屬性向量 42
2.5.3 面部編輯 43
2.6 本章小結 45
第3章 生成對抗網絡 46
3.1 技術要求 46
3.2 了解GAN的基本原理 47
3.2.1 GAN的架構 47
3.2.2 價值函數 48
3.2.3 GAN訓練步驟 51
3.3 構建深度卷積GAN(DCGAN) 53
3.3.1 結構指南 53
3.3.2 建立Fashion-MNIST的DCGAN 55
3.3.3 訓練我們的DCGAN 58
3.4 訓練GAN的挑戰 60
3.4.1 無信息損失和度量 60
3.4.2 不穩定性 61
3.4.3 梯度消失 61
3.4.4 模式崩塌 62
3.5 建立Wasserstein GAN(WGAN) 63
3.5.1 理解Wasserstein損失 64
3.5.2 實現1-Lipschitz約束 65
3.5.3 重組訓練步驟 66
3.5.4 實施梯度懲罰(WGAN-GP) 68
3.5.5 調整CelebA的WGAN-GP 71
3.6 本章小結 73
第2篇 深度生成模型的應用
第4章 圖像到圖像的翻譯 76
4.1 技術要求 76
4.2 條件GAN 77
4.2.1 實現條件DCGAN 78
4.2.2 條件GAN的變體 82
4.3 使用pix2pix進行圖像翻譯 84
4.3.1 丟棄隨機噪聲 85
4.3.2 U-Net作為生成器 85
4.3.3 損失函數 88
4.3.4 實現PatchGAN判別器 88
4.3.5 訓練pix2pix 90
4.4 CycleGAN的非成對圖像翻譯 91
4.4.1 未配對的數據集 91
4.4.2 循環一致性損失 92
4.4.3 構建CycleGAN模型 93
4.4.4 分析CycleGAN 95
4.5 用BicycleGAN實現圖像翻譯多樣化 96
4.5.1 理解體系結構 97
4.5.2 實現BicycleGAN 99
4.6 本章小結 104
第5章 風格遷移 105
5.1 技術要求 105
5.2 神經風格遷移 106
5.2.1 利用VGG提取特征 107
5.2.2 內容重構 109
5.2.3 用Gram矩陣重建風格 111
5.2.4 執行神經風格遷移 113
5.3 改進風格遷移 114
5.3.1 使用前饋網絡進行快速風格遷移 116
5.3.2 不同的風格特征 117
5.3.3 使用歸一化層控制風格 117
5.4 實時任意風格轉換 118
5.4.1 實現自適應實例歸一化 119
5.4.2 風格遷移網絡架構 120
5.4.3 任意風格遷移訓練 123
5.5 基于風格的GAN簡介 126
5.6 本章小結 131
第6章 人工智能畫家 132
6.1 技術要求 132
6.2 iGAN介紹 132
6.2.1 了解流形 134
6.2.2 圖像編輯 135
6.3 基于GauGAN的分割圖到圖像的翻譯 139
6.3.1 pix2pixHD介紹 139
6.3.2 空間自適應歸一化(SPADE) 140
6.3.3 實際應用GauGAN 146
6.4 本章小結 153
第3篇 高級深度生成技術
第7章 高保真人臉生成 156
7.1 技術要求 156
7.2 ProGAN概述 156
7.2.1 像素歸一化 158
7.2.2 使用小批量統計增加圖像變化 159
7.2.3 均衡學習率 160
7.3 ProGAN的建立 162
7.3.1 生成器塊的建立 162
7.3.2 判別器塊的建立 164
7.3.3 逐步發展網絡 165
7.3.4 損失函數 169
7.3.5 存在的問題 169
7.4 實際應用StyleGAN 171
7.4.1 風格化生成器 172
7.4.2 實現映射網絡 173
7.4.3 添加噪聲 174
7.4.4 AdaIN的實現 174
7.4.5 建造生成器塊 175
7.4.6 StyleGAN的訓練 176
7.5 本章小結 177
第8章 圖像生成的自注意力機制 178
8.1 技術要求 178
8.2 譜歸一化 179
8.2.1 了解譜范數 179
8.2.2 譜的歸一化實現 180
8.3 自注意力模塊 181
8.3.1 計算機視覺的自注意力 181
8.3.2 自注意力模塊的實現 183
8.4 建立SAGAN 185
8.4.1 構建SAGAN生成器 186
8.4.2 條件批量歸一化 187
8.4.3 構建判別器 189
8.4.4 訓練SAGAN 190
8.5 實現BigGAN 191
8.5.1 縮放GAN 191
8.5.2 跳過潛在向量 192
8.5.3 共享類嵌入 193
8.5.4 正交歸一化 195
8.6 本章小結 196
第9章 視頻合成 197
9.1 技術要求 197
9.2 視頻合成概述 198
9.2.1 理解人臉視頻合成 198
9.2.2 DeepFake概述 199
9.3 實現人臉圖像處理 201
9.3.1 從視頻中提取圖像 201
9.3.2 檢測和定位人臉 202
9.3.3 面部特征的檢測 203
9.3.4 面部對齊 204
9.3.5 面部扭曲 206
9.4 建立DeepFake模型 208
9.4.1 構建編碼器 208
9.4.2 構建解碼器 209
9.4.3 訓練自編碼器 210
9.5 人臉互換 212
9.6 用GAN改進DeepFake 214
9.7 本章小結 216
第10章 總結與展望 217
10.1 GAN的回顧 217
10.1.1 優化和激活功能 218
10.1.2 對抗損失 218
10.1.3 輔助損失 219
10.1.4 歸一化 219
10.1.5 正則化 220
10.2 將你的技能付諸實踐 221
10.2.1 不要相信你讀到的一切 221
10.2.2 你的GPU夠強嗎 221
10.2.3 使用現有的模型構建你的模型 221
10.2.4 理解模型的局限性 222
10.3 圖像處理 222
10.3.1 圖像修整 222
10.3.2 圖像壓縮 224
10.3.3 圖像超分辨率 225
10.4 文本轉圖像 225
10.5 視頻重定向 227
10.5.1 人臉再現 228
10.5.2 姿勢轉換 229
10.5.3 運動轉移 230
10.6 神經渲染 231
10.7 本章小結 233
展開全部

基于TensorFlow的圖像生成 作者簡介

Soon Yau Cheong是一名人工智能顧問,也是Sooner.ai公司的創始人,曾與NVIDIA和高通等行業巨頭合作,在人工智能的各個領域提供咨詢服務,如深度學習、計算機視覺、自然語言處理和大數據分析。冒燕,男,1978年5月生,武漢理工大學講師,博士學歷,主要從事光纖傳感及醫學OCT系統成像等技術等研究。發表論文30余篇,其中SCI/EI檢索論文15篇。獲得授權國家發明專利4項,省部級科技獎勵5項,參與編寫出版著作2本。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 电子元器件呆滞料_元器件临期库存清仓尾料_尾料优选现货采购处理交易商城 | 运动木地板_体育木地板_篮球馆木地板_舞台木地板-实木运动地板厂家 | 护腰带生产厂家_磁石_医用_热压护腰_登山护膝_背姿矫正带_保健护具_医疗护具-衡水港盛 | 河南15年专业网站建设制作设计,做网站就找郑州启凡网络公司 | 聚合氯化铝-碱式氯化铝-聚合硫酸铁-聚氯化铝铁生产厂家多少钱一吨-聚丙烯酰胺价格_河南浩博净水材料有限公司 | 全自动过滤器_反冲洗过滤器_自清洗过滤器_量子除垢环_量子环除垢_量子除垢 - 安士睿(北京)过滤设备有限公司 | 碳化硅,氮化硅,冰晶石,绢云母,氟化铝,白刚玉,棕刚玉,石墨,铝粉,铁粉,金属硅粉,金属铝粉,氧化铝粉,硅微粉,蓝晶石,红柱石,莫来石,粉煤灰,三聚磷酸钠,六偏磷酸钠,硫酸镁-皓泉新材料 | 超声波清洗机_大型超声波清洗机_工业超声波清洗设备-洁盟清洗设备 | 门禁卡_智能IC卡_滴胶卡制作_硅胶腕带-卡立方rfid定制厂家 | 冷轧机|两肋冷轧机|扁钢冷轧机|倒立式拉丝机|钢筋拔丝机|收线机-巩义市华瑞重工机械制造有限公司 | 滤芯,过滤器,滤油机,贺德克滤芯,精密滤芯_新乡市宇清流体净化技术有限公司 | 电缆接头_防水接头_电缆防水接头 - 乐清市新豪电气有限公司 | 机床主轴维修|刀塔维修|C轴维修-常州翔高精密机械有限公司 | 健康管理师报考条件,考试时间,报名入口—首页 | 档案密集架_电动密集架_移动密集架_辽宁档案密集架-盛隆柜业厂家现货批发销售价格公道 | 杭州代理记账费用-公司注销需要多久-公司变更监事_杭州福道财务管理咨询有限公司 | 专注提供国外机电设备及配件-工业控制领域一站式服务商-深圳市华联欧国际贸易有限公司 | 便携式高压氧舱-微压氧舱-核生化洗消系统-公众洗消站-洗消帐篷-北京利盟救援 | 柴油发电机组_柴油发电机_发电机组价格-江苏凯晨电力设备有限公司 | 皮带机_移动皮带机_大倾角皮带机_皮带机厂家 - 新乡市国盛机械设备有限公司 | 嘉兴泰东园林景观工程有限公司_花箱护栏 | 中空玻璃生产线,玻璃加工设备,全自动封胶线,铝条折弯机,双组份打胶机,丁基胶/卧式/立式全自动涂布机,玻璃设备-山东昌盛数控设备有限公司 | [品牌官网]贵州遵义双宁口腔连锁_贵州遵义牙科医院哪家好_种植牙_牙齿矫正_原华美口腔 | 螺杆真空泵_耐腐蚀螺杆真空泵_水环真空泵_真空机组_烟台真空泵-烟台斯凯威真空 | 山东氧化铁红,山东铁红-淄博科瑞化工有限公司 | ◆大型吹塑加工|吹塑加工|吹塑代加工|吹塑加工厂|吹塑设备|滚塑加工|滚塑代加工-莱力奇塑业有限公司 | 低温柔性试验仪-土工布淤堵-沥青车辙试验仪-莱博特(天津)试验机有限公司 | 上海公司注册-代理记账-招投标审计-上海昆仑扇财税咨询有限公司 上海冠顶工业设备有限公司-隧道炉,烘箱,UV固化机,涂装设备,高温炉,工业机器人生产厂家 | 酸度计_PH计_特斯拉计-西安云仪| 春腾云财 - 为企业提供专业财税咨询、代理记账服务 | 电子天平-华志电子天平厂家| 橡胶接头_橡胶软接头_套管伸缩器_管道伸缩器厂家-巩义市远大供水材料有限公司 | 重庆小面培训_重庆小面技术培训学习班哪家好【终身免费复学】 | 板式换网器_柱式换网器_自动换网器-郑州海科熔体泵有限公司 | 英思科GTD-3000EX(美国英思科气体检测仪MX4MX6)百科-北京嘉华众信科技有限公司 | 煤矿支护网片_矿用勾花菱形网_缝管式_管缝式锚杆-邯郸市永年区志涛工矿配件有限公司 | 钢绞线万能材料试验机-全自动恒应力两用机-混凝土恒应力压力试验机-北京科达京威科技发展有限公司 | 新能源汽车教学设备厂家报价[汽车教学设备运营18年]-恒信教具 | 辐射色度计-字符亮度测试-反射式膜厚仪-苏州瑞格谱光电科技有限公司 | 电镀标牌_电铸标牌_金属标贴_不锈钢标牌厂家_深圳市宝利丰精密科技有限公司 | 护栏打桩机-打桩机厂家-恒新重工 |