-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
流體力學基礎(chǔ)(英漢對照版) 版權(quán)信息
- ISBN:9787030728036
- 條形碼:9787030728036 ; 978-7-03-072803-6
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
流體力學基礎(chǔ)(英漢對照版) 本書特色
印度專家和中國專家合作撰寫,英漢對照,適合雙語教學。
流體力學基礎(chǔ)(英漢對照版) 內(nèi)容簡介
本書通過物理描述、理論分析和具體應用求解相結(jié)合的邏輯方式,以淺顯易懂的語言全面介紹了流體力學的基礎(chǔ)知識,包括流體力學的基本概念、流體的性質(zhì)、流體靜力學、流體運動學和動力學、流體流動的基本定律和基本方程以及邊界層理論等內(nèi)容,著重分析了黏性流動中的阻力、湍流、管道流動和圓柱繞流等幾個流體動力學問題。本書在通俗地論述流體力學基本理論的基礎(chǔ)上,結(jié)合各章中給出的大量計算實例和練習題,對流體力學基本概念和理論進行了理論聯(lián)系實際的闡述。 本書可用作初級流體力學課程的教材,適用于機械、航空航天、能源動力、化工、水利等專業(yè)本科生和研究生;也可用作流體力學學習和實際流體力學問題求解的入門級參考書,適用于科研人員、工程師和流體力學愛好者等。
流體力學基礎(chǔ)(英漢對照版) 目錄
Preface
Chapter 1 Basic Concepts 1
1.1 Introduction 1
1.2 Some Basic Facts About Fluid Mechanics 1
1.3 Fluids and the Continuum 5
1.4 The Perfect Gas Equation of State 7
1.5 Regimes of Fluid Mechanics 9
1.5.1 Ideal Fluid Flow 9
1.5.2 Viscous Incompressible Flow 10
1.5.3 Gas Dynamics 10
1.5.4 Rarefied Gas Dynamics 11
1.5.5 Flow of Multicomponent Mixtures 13
1.5.6 Non-Newtonian Fluid Flow 13
1.6 Dimension and Units 13
1.7 Law of Dimensional Homogeneity 14
1.8 Summary 17
1.9 Exercises 17
Chapter 2 Properties of Fluids 19
2.1 Introduction 19
2.2 Basic Properties of Fluids 19
2.2.1 Pressure of Fluids 20
2.2.2 Temperature 21
2.2.3 Density 22
2.2.4 Viscosity 23
2.2.5 Compressibility 28
2.3 Thermodynamic Properties of Fluids 29
2.3.1 Specific Heat 29
2.3.2 The Ratio of Specific Heats 30
2.3.3 Thermal Conductivity of Air 31
2.4 Surface Tension 32
2.5 Summary 34
2.6 Exercises 34
Chapter 3 Fluid Statics 36
3.1 Introduction 36
3.2 Scalar, Vector and Tensor Quantities 36
3.3 Body and Surface Forces 37
3.4 Forces in Stationary Fluids 38
3.5 Pressure Force on a Fluid Element 39
3.6 Basic Equations of Fluid Statics 40
3.6.1 Hydrostatic Pressure Distribution 41
3.6.2 Measurement of Pressures 43
3.6.3 Units and Scales of Pressure Measurement 46
3.7 The Atmosphere 46
3.7.1 The International Standard Atmosphere 47
3.7.2 Calculations on the Stratosphere 47
3.7.3 Calculations on the Troposphere 49
3.8 Hydrostatic Force on Submerged Surfaces 54
3.9 Buoyancy 56
3.10 Summary 57
3.11 Exercises 58
References 62
Chapter 4 Kinematics and Dynamics of Fluid Flow 63
4.1 Introduction 63
4.2 Description of Fluid Flow 63
4.2.1 Lagrangian and Eulerian Methods 63
4.2.2 Local and Material Rates of Change 64
4.2.3 Graphical Description of Fluid Motion 66
4.3 Basic and Subsidiary Laws 68
4.3.1 System and Control Volume 68
4.3.2 Integral and Differential Analysis 69
4.4 Basic Equation 69
4.4.1 Continuity Equation 70
4.4.2 Momentum Equation 70
4.4.3 Equation of State 72
4.4.4 Boundary Layer Equation 73
4.5 Rotational and Irrotational Motion 75
4.5.1 Circulation and Vorticity 75
4.5.2 Stream Function 76
4.5.3 Relationship Between Stream Function and Velocity Potential 77
4.6 Potential Flow 78
4.6.1 Two-Dimensional Source and Sink 81
4.6.2 Simple Vortex 82
4.6.3 Source-Sink Pair 84
4.6.4 Doublet 84
4.7 Flow Past a Half-Body—Combination of Simple Flows 88
4.8 Summary 97
4.9 Exercises 97
Chapter 5 Several Problems of Fluid Dynamics 114
5.1 Introduction 114
5.2 Viscous Flows 114
5.3 Drag of Bodies 117
5.3.1 Pressure Drag 118
5.3.2 Skin Friction Drag 124
5.3.3 Comparison of Drag of Various Bodies 125
5.4 Turbulence 128
5.5 Flow Through Pipes 136
5.6 Flow Past a Circular Cylinder Without Circulation 142
5.7 Flow Past a Circular Cylinder With Circulation 146
5.8 Summary 151
5.9 Exercises 151
References 162
Chapter 6 Boundary Layer 163
6.1 Introduction 163
6.2 Boundary Layer Development 164
6.3 Boundary Layer Thickness 167
6.3.1 Displacement Thickness 168
6.3.2 Momentum Thickness 170
6.3.3 Kinetic Energy Thickness 171
6.3.4 Non-Dimensional Velocity Profile 172
6.3.5 Types of Boundary Layer 173
6.4 Boundary Layer Flow 175
6.5 Boundary Layer Solutions 179
6.6 Momentum-Integral Estimates 179
6.6.1 Conservation of Linear Momentum 179
6.6.2 Karman’s Analysis of Flat Plate Boundary Layer 181
6.7 Boundary Layer Equations in Dimensionless Form 182
6.8 Flat Plate Boundary Layer 189
6.8.1 Laminar Flow Boundary Layer 190
6.8.2 Boundary Layer Thickness for Flat Plate 192
6.9 Turbulent Boundary Layer for Incompressible Flow Along a Flat Plate 201
6.10 Flows With Pressure Gradient 205
6.11 Laminar Integral Theory 206
6.12 Summary 214
6.13 Exercises 214
References 217
目錄
前言
第1章 基本概念 1
1.1 引言 1
1.2 流體力學概況 1
1.3 流體和連續(xù)介質(zhì) 5
1.4 完全氣體狀態(tài)方程 7
1.5 流體力學范疇 9
1.5.1 理想流體流動 9
1.5.2 黏性不可壓縮流動 10
1.5.3 氣體動力學 10
1.5.4 稀薄氣體動力學 11
1.5.5 多元混合流動 13
1.5.6 非牛頓流體流動 13
1.6 量綱和單位制 13
1.7 量綱一致性原理 14
1.8 小結(jié) 17
1.9 習題 17
第2章 流體的性質(zhì) 19
2.1 引言 19
2.2 流體的基本性質(zhì) 19
2.2.1 流體壓力 20
2.2.2 溫度 21
2.2.3 密度 22
2.2.4 黏性 23
2.2.5 可壓縮性 28
2.3 流體的熱力學性質(zhì) 29
2.3.1 比熱 29
2.3.2 比熱比 30
2.3.3 空氣的導熱性 31
2.4 表面張力 32
2.5 小結(jié) 34
2.6 習題 34
第3章 流體靜力學 36
3.1 引言 36
3.2 標量、矢量和張量 36
3.3 體積力和表面力 37
3.4 靜止流體中的力 38
3.5 流體微元上的壓力合力 39
3.6 流體靜力學基本方程 40
3.6.1 流體靜壓分布 41
3.6.2 壓力測量 43
3.6.3 壓力測量單位和尺度 46
3.7 大氣 46
3.7.1 國際標準大氣 47
3.7.2 平流層計算 47
3.7.3 對流層計算 49
3.8 浸沒表面上的靜壓力 54
3.9 浮力 56
3.10 小結(jié) 57
3.11 習題 58
參考文獻 62
第4章 流體運動學和動力學 63
4.1 引言 63
4.2 流體流動的描述 63
4.2.1 拉格朗日法和歐拉法 63
4.2.2 當?shù)貙?shù)和隨體(物質(zhì))導數(shù) 64
4.2.3 流體運動的圖形化描述 66
4.3 基本定律和
流體力學基礎(chǔ)(英漢對照版) 節(jié)選
Chapter 1 Basic Concepts 第1章 基本概念 1.1 Introduction Precise definitions of the basic concepts form the foundation for the proper development of a subject. Fluid mechanics has a unique vocabulary associated with it, like any other science. In this chapter, some important basic concepts associated with fluid mechanics are discussed. The unit systems and the law of dimensional homogeneity that will be used are also reviewed. Careful study of these concepts will be of great value for understanding the topics covered in the following chapters. 1.2 Some Basic Facts About Fluid Mechanics Fluid mechanics may be defined as the subject dealing with the investigation of the motion and equilibrium of fluids. It is one of the oldest branches of physics and foundation for the understanding of many essential aspects of applied sciences and engineering. It is a subject of enormous interest in numerous fields such as biology, biomedicine, geophysics, meteorology, physical chemistry, plasma physics, and almost all branches of engineering. Nearly two hundred years ago, man thought of laying down scientific rules to govern the motion of fluids. The rules were used mainly on the flow of water and air to understand them so that people can protect themselves from their fury during natural calamities such as cyclone and floods and utilize their power to develop fields like civil engineering and naval architecture. In spite of the common origin, two distinct schools of thought gradually developed. On one hand, through the concept of “ideal fluid”, mathematical physicists developed the theoretical science, known as classical hydrodynamics. On the other hand, realizing that idealized theories were of no practical application without empirical correction factors, engineers developed the applied science from experimental studies, known as hydraulics, for the specific fields of irrigation, water supply, river flow control, hydraulic power, and so on. Further, the development of aerospace, chemical, and mechanical engineering during the past few decades, and the exploration of space from 1960s have increased the interest in the study of fluid mechanics. Thus, it now ranks as one of the most-important basic subjects in engineering science. 1.1 引言 對基本概念的準確定義是一個學科正確發(fā)展的基礎(chǔ)。和其他學科一樣,流體力學也有一個與之相關(guān)的專業(yè)術(shù)語表。本章討論與流體力學有關(guān)的一些重要基本概念,并對書中所涉及的單位制及量綱一致性原理進行綜述。認真學習這些基本概念對后續(xù)章節(jié)內(nèi)容的理解至關(guān)重要。 1.2 流體力學概況 流體力學可以被定義為一門研究流體運動和平衡規(guī)律的學科。流體力學是物理學古老的分支之一,也是理解應用科學和工程學許多基本原理的基礎(chǔ)。在生物學、生物醫(yī)學、地球物理學、氣象學、物理化學、等離子體物理學等眾多領(lǐng)域,以及幾乎所有的工程學分支領(lǐng)域,流體力學都是非常受關(guān)注的學科。 大約兩百年前,人們想到建立科學的定律來掌握流體的運動。這些定律主要用來理解水和空氣的流動規(guī)律,從而使人類能夠保護自己免受颶風和洪水等自然災害的侵襲,并利用這些自然動力來發(fā)展土木工程和海事工程。盡管起源相同,但兩個截然不同的流體力學學派逐漸發(fā)展了起來。一方面,數(shù)學物理學家們通過“理想流體”這一概念發(fā)展了流體力學理論科學,即經(jīng)典流體力學。另一方面,工程師認識到不經(jīng)過經(jīng)驗修正,理想化的理論就不實用,于是通過實驗研究發(fā)展出用于灌溉、給水、河流控制、水力等專業(yè)領(lǐng)域的流體力學應用科學,即水力學。此外,航空航天、化學工程和機械工程在過去幾十年的發(fā)展,以及20世紀60年代以來人類對外太空的探索,都進一步激發(fā)了人們對流體力學的研究熱情。因此,流體力學已經(jīng)成為工程科學中重要的基礎(chǔ)學科之一。 The science of fluid mechanics has been extended into fields like regimes of hypervelocity flight and flow of electrical conducting fluids. This has introduced new fields of interest such as hypersonic flow and magneto-fluid dynamics. In this connection, it has become essential to combine the knowledge of thermodynamics, heat transfer, mass transfer, electromagnetic theory and fluid mechanics, for the complete understanding of the physical phenomenon involved in any flow process. Fluid mechanics is one of the rapidly growing basic sciences, whose principles find application even in daily life. For instance, the flight of birds in air and the motion of fish in water are governed by the fluid mechanics rules. The design of various types of aircraft and ships is based on the fluid mechanics principles. Even natural phenomena like tornadoes and hurricanes can also be explained by the science of fluid mechanics. In fact, the science of fluid mechanics dealing with such natural phenomena has been developed to such an extent that they can be predicted well in advance. Since the earth is surrounded by an environment of air and water to a very large extent, almost everything that is happening on the earth and its atmosphere are some way or the other associated with the science of fluid mechanics. 流體力學已經(jīng)拓展到超高速飛行和導電流體流動等范疇,并衍生出新的研究領(lǐng)域,例如高超聲速流動和磁流體動力學。在這種拓展和演變背景下,將熱力學、傳熱學、傳質(zhì)學、電磁理論與流體力學知識相結(jié)合,已經(jīng)成為全面理解任何一個流動過程物理現(xiàn)象必不可少的手段。 流體力學是快速發(fā)展的基礎(chǔ)科學之一,其原理甚至可應用于日常生活中。例如,空中鳥兒的飛翔和水中魚兒的游動都符合流體力學規(guī)律。各種飛機和船舶的設(shè)計也要遵循流體力學原理。甚至像颶風和臺風這樣的自然現(xiàn)象也能用流體力學來解釋。事實上,與這些自然現(xiàn)象相關(guān)的流體力學學科已經(jīng)發(fā)展到能夠很好地預測這些自然現(xiàn)象的程度。由于地球的絕大部分是被空氣和水所包圍的,因此地球上及大氣中發(fā)生的一切幾乎都或多或少和流體力學相關(guān)。 The science of fluid motion is referred to as the mechanics of fluids, an allied subject of the mechanics of solids and engineering materials, and built on the same fundamental laws of motion. Therefore, unlike empirical hydraulics, it is based on the physical principles, and has close correlation with experimental studies which both compliment and substantiate the fundamental analysis, unlike the classical hydrodynamics which
- >
我從未如此眷戀人間
- >
有舍有得是人生
- >
伊索寓言-世界文學名著典藏-全譯本
- >
月亮虎
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術(shù)叢書(紅燭學術(shù)叢書)
- >
史學評論
- >
羅曼·羅蘭讀書隨筆-精裝
- >
二體千字文