中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)
> >
原位合成鋁基復(fù)合材料(英文版)

包郵 原位合成鋁基復(fù)合材料(英文版)

作者:趙玉濤
出版社:科學(xué)出版社出版時(shí)間:2022-08-01
開(kāi)本: 其他 頁(yè)數(shù): 296
中 圖 價(jià):¥149.3(7.5折) 定價(jià)  ¥199.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車(chē) 收藏
開(kāi)年大促, 全場(chǎng)包郵
?新疆、西藏除外
本類(lèi)五星書(shū)更多>

原位合成鋁基復(fù)合材料(英文版) 版權(quán)信息

原位合成鋁基復(fù)合材料(英文版) 本書(shū)特色

本書(shū)較系統(tǒng)、詳細(xì)地介紹了原位鋁基復(fù)合材料的體系設(shè)計(jì)、材料開(kāi)發(fā)、制備技術(shù)、凝固組織、塑變加工及性能

原位合成鋁基復(fù)合材料(英文版) 內(nèi)容簡(jiǎn)介

近年來(lái),隨著能源環(huán)境問(wèn)題日益凸顯和輕量化設(shè)計(jì)制造的需求日益迫切,航空航天、軌道交通、節(jié)能汽車(chē)等高技術(shù)領(lǐng)域?qū)υ讳X基復(fù)合材料的需求潛力巨大,且對(duì)其綜合性能的要求也越來(lái)越高.本書(shū)較系統(tǒng)、詳細(xì)地介紹了原位鋁基復(fù)合材料的體系設(shè)計(jì)、材料開(kāi)發(fā)、制備技術(shù)、凝固組織、塑變加工及性能.全書(shū)共九章,主要內(nèi)容包括:原位反應(yīng)體系的設(shè)計(jì)與開(kāi)發(fā)、電磁法合成原位鋁基復(fù)合材料、高能超聲法合成原位鋁基復(fù)合材料、聲磁耦合法合成原位鋁基復(fù)合材料、原位鋁基復(fù)合材料的凝固組織及界面結(jié)構(gòu)、塑變加工對(duì)原位鋁基復(fù)合材料組織的影響、原位鋁基復(fù)合材料的力學(xué)性能、原位鋁基復(fù)合材料的磨損性能.內(nèi)容豐富、新穎,具有系統(tǒng)性和前瞻性,反映了作者團(tuán)隊(duì)二十余年來(lái)在原位鋁基復(fù)合材料領(lǐng)域的科研成果。

原位合成鋁基復(fù)合材料(英文版) 目錄

Contents

rface
Chapter 1 Introduction 1
1.1 The development history of metal matrix composites 1
1.2 In-situ reaction synthesis technology 2
1.2.1 Self-propagating high-temperature synthesis (SHS) method 2
1.2.2 Exothermic dispersion (XDTM) method 3
1.2.3 Contact reaction (CR) method 4
1.2.4 Vapor liquid synthesis (VLS) method 5
1.2.5 Lanxide method 6
1.2.6 Mixed salt reaction (LSM) method 7
1.2.7 Direct melt reaction (DMR) method 8
1.2.8 Other methods 9
1.3 Current status of in-situ aluminum matrix composites 10
1.3.1 Design and simulation of in-situ aluminum matrix composites 10
1.3.2 Preparation and forming technology of in-situ aluminum matrix composites 11
1.3.3 Interface, microstructure, and performance control of in-situ aluminum matrix composites 13
1.3.4 Service behavior and damage failure mechanisms of in-situ aluminum matrix composites in simulated environment 14
References 15
Chapter 2 Design and development of in-situ reaction systems 18
2.1 Thermodynamics and kinetics of reaction systems 19
2.2 Development of new reaction systems for in-situ aluminum matrix composites 20
2.2.1 Al-Zr-O system development 22
2.2.2 Al-Zr-B system development 30
2.2.3 Al-Zr-B-O system development 33
References 40
Chapter 3 Synthesis of in-situ aluminum matrix composites by electromagnetic method 42
3.1 Effect of electromagnetic field on melt and chemical reaction 42
3.1.1 Distribution of B and F 42
3.1.2 Temperature distribution in the electromagnetic field 46
3.1.3 Effect of electromagnetic field on the melt 47
3.1.4 Effect of electromagnetic field on chemical reactions 49
3.2 Law of electromagnetic synthesis of aluminum matrix composites 51
3.2.1 Effect of magnetic induction intensity 52
3.2.2 Effect of processing time of magnetic field 53
3.2.3 Effect of additive amount of reactants 55
3.2.4 Effect of initial reaction temperature 57
3.3 Mechanism of electromagnetic synthesis of composites 57
3.3.1 The condition under which the reactants enter the melt 58
3.3.2 Thermodynamic conditions for the electromagnetic synthesis of composites 61
3.3.3 Kinetic conditions for the electromagnetic synthesis of composites 67
References 73
Chapter 4 High-energy ultrasonic synthesis of in-situ aluminum matrix composites 75
4.1 Effect of high-energy ultrasound on metal melt and reactions 75
4.1.1 Application of ultrasonic chemistry in the field of metal matrix composites 75
4.1.2 Ultrasonic generator 76
4.1.3 Effect of high-energy ultrasound on the microstructure of 2024Al composite 77
4.2 The principle of high-energy ultrasonic synthesis of aluminum matrix composites 80
4.2.1 Effect of high-energy ultrasound on A356 alloy  80
4.2.2 Effect of high-energy ultrasound on Al-Zr(CO3)2 synthetic composite material 82
4.2.3 Effect of high-energy ultrasound on composite material synthesized from A356-(K2ZrF6+KBF4) system 84
4.2.4 Effect of high-energy ultrasound on composite material synthesized from A356-Ce2(CO3)3 system 87
4.2.5 Effect of high-energy ultrasound on composite material synthesized from A356-K2ZrF6-KBF4-Na2B4O7 system 89
4.2.6 Effect of high-energy ultrasound on composite material synthesized from 6063Al-Al2(SO4)3 system 92
4.2.7 Effect of high-energy ultrasonic on composite material synthesized from 7055Al-(Al-3B) alloy-Ti system 98
4.3 Mechanism of in-situ aluminum matrix composites synthesis under high-energy ultrasound 100
4.3.1 The characteristics and principle of ultrasound 100
4.3.2 Action mechanism of high-energy ultrasound during in-situ melt reaction 102
References 107
Chapter 5 Synthesis of in-situ aluminum matrix composites by acoustomagnetic coupling field 109
5.1 Application of acoustomagnetic coupling method on metal melt and reaction 109
5.1.1 Influence of acoustomagnetic field on metal melt and reactions 109
5.1.2 Application of acoustomagnetic coupling field in preparation of alloys and composite materials 110
5.2 The principle of synthesis of in-situ aluminum matrix composites by acoustomagnetic coupling field 111
5.2.1 Reactive synthesis of Al3Ti/6070Al composites under acoustomagnetic coupling field 111
5.2.2 Reaction synthesis of TiB2/7055Al composites under acoustomagnetic coupling field 115
5.2.3 (Al2O3+ZrB2)/A356 composite prepared by acoustomagnetic coupling field 118
5.3 Mechanism of acoustomagnetic coupled synthesis of aluminum matrix composites 125
5.3.1 Flow of molten aluminum in ultrasonic field 125
5.3.2 Flow field analysis in electromagnetic stirring process 130
5.3.3 Analysis of the coupling effect of ultrasonic field and magnetic field 132
References 137
Chapter 6 Interface structure of matrix/in-situ reinforcement 139
6.1 Morphology and growth mechanism of in-situ Al3Zr  139
6.1.1 TEM morphology and crystal structure of in-situ Al3Zr 139
6.1.2 Formation and growth

展開(kāi)全部

原位合成鋁基復(fù)合材料(英文版) 節(jié)選

Chapter 1 Introduction 1.1 The development history of metal matrix composites In today’s rapidly developing world of science and technology, the field of materials science is tremendously changing; new theoretical concepts, ideas, and technologies continue to emerge, and preparation of composites is a new trend. Composites are new materials obtained by optimizing the combination of two or more materials of completely different properties. These materials have passed through various stages of development from natural materials to artificial materials, from simply structured materials to complex structured and functional materials; each stage is gradually entering into a higher, more refined, and faster development phase, thus incorporating new high-tech ideas and rendering rapid development pace to aerospace, transportation, information, biology, and other industries[1]. Metal matrix composites (MMCs) are composite materials that use metals or alloys as the matrix and fibers, whiskers, particles, or a combination of these as reinforcements. Because composite materials receive the properties of metal or alloy matrix (plasticity, toughness) and ceramic reinforcements (high strength, high stiffness), they have the advantages of higher strength and elastic modulus, good high-temperature performance, excellent wear resistance, etc., thus having important applications and broad prospects in the fields of aerospace, automotive, electronics, packaging, and sports industries. Due to the alarming conditions of energy and environment for human survival and for further development of transportation, aerospace, electronics, information technology, national defense, military industry, and sports industries, the demand for lightweight and high-strength multifunctional MMCs is growing[2]. The USA and Japan are currently the world’s leading countries in the research and development of metal matrix composites. U. S. Department of Defense has recognized the metal matrix composite materials as the key technology and invested a lot of money, manpower, making it the world leader. The USA has been conducting research on metal matrix composites since the 1960s. It entered into the practical phase in the 1970s and began to widely use MMCs in the aerospace industry in the 1980s. For example, boron fiber-reinforced aluminum matrix composite materials were used for the cargo tank truss of the STS Columbia, launched in 1981. After that, the MMCs industry developed rapidly in the USA, and in 2000, the total production value of advanced MMCs in the USA had reached 20 billion US dollars. In Japan, the research and development of MMCs started later, and the investment in the research of MMCs only began in the early 1980s. However, the development rate was very fast,and it took only about 20 years for Japan to quickly occupy a very important position in the production and application research of metal matrix composites in the world. Japan successfully manufactured large-scale long fiber, whisker and other types of MMCs reinforcements, and only two years later, Japan’s Honda Motor Company first applied this technology to the cylinder block piston by utilizing AL2O3 short fibers as reinforcement in aluminum alloy composites. Japan achieved large-scale industrial production so that it quickly reached the forefront of MMCs in the world. At present, according to incomplete statistics, there are at least 40 companies in Japan active in research and development of MMCs. According to the latest business survey of the American Business Information Corporation, the total MMCs market in the world reached more than 10 000 tons in 2014. At present, there are hundreds of unique MMCs companies in the world that have exclusive technologies (such as DWA’s powder metallurgy), or specialize in a certain material (such as Alcan’s aluminum-based MMCs), or focus on a specific product type (such as CPS’s thermal packaging substrate). It is predicted that the global MMCs market will maintain an 8% annual growth rate. According to different application fields, the MMCs market can be subdivided into five categories:① land transportation,② electronics/thermal control,③ aerospace, ④ industry, and ⑤ consumer products. Among these, land transportation (including automobiles and rail vehicles) and high value-added heat dissipation components are still the dominant markets for MMCs, with consumption rates exceeding 60% and 30%, respectively. 1.2 In-situ reaction synthesis technology 1.2.1 Self-propagating high-temperature synthesis (SHS) method The self-propagating high-temperature synthesis (SHS) method was proposed by Soviet scientists Merzhanov et al.[6] while studying the combustion of Ti and C compact mixture. The principle is to mix the raw materials of reinforced phase with the metal powder, and a compact is formed. Preheating and ignition in a vacuum or inert gas cause an exothermic chemical reaction between the reaction

暫無(wú)評(píng)論……
書(shū)友推薦
本類(lèi)暢銷(xiāo)
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: 橡胶电子拉力机-塑料-微电脑电子拉力试验机厂家-江苏天源 | 合金耐磨锤头_破碎机锤头_郑州市德勤建材有限公司 | 天津中都白癜风医院_天津白癜风医院_天津治疗白癜风 | 北京征地律师,征地拆迁律师,专业拆迁律师,北京拆迁律师,征地纠纷律师,征地诉讼律师,征地拆迁补偿,拆迁律师 - 北京凯诺律师事务所 | 抖音短视频运营_企业网站建设_网络推广_全网自媒体营销-东莞市凌天信息科技有限公司 | 定制防伪标签_防伪标签印刷_防伪标签厂家-510品保防伪网 | 天一线缆邯郸有限公司_煤矿用电缆厂家_矿用光缆厂家_矿用控制电缆_矿用通信电缆-天一线缆邯郸有限公司 | 超声波清洗机-超声波清洗设备定制生产厂家 - 深圳市冠博科技实业有限公司 | 硫酸亚铁-聚合硫酸铁-除氟除磷剂-复合碳源-污水处理药剂厂家—长隆科技 | 清水-铝合金-建筑模板厂家-木模板价格-铝模板生产「五棵松」品牌 | 不锈钢水箱厂家,不锈钢保温水箱-山东桑特供水设备 | 阀门智能定位器_电液动执行器_气动执行机构-赫尔法流体技术(北京)有限公司 | 河南卓美创业科技有限公司-河南卓美防雷公司-防雷接地-防雷工程-重庆避雷针-避雷器-防雷检测-避雷带-避雷针-避雷塔、机房防雷、古建筑防雷等-山西防雷公司 | 数控走心机-走心机价格-双主轴走心机-宝宇百科 | CCE素质教育博览会 | CCE素博会 | 教育展 | 美育展 | 科教展 | 素质教育展 | 吊篮式|移动式冷热冲击试验箱-二槽冷热冲击试验箱-广东科宝 | 搪瓷搅拌器,搪玻璃搅拌器,搪玻璃冷凝器_厂家-淄博越宏化工设备 | 浙江美尔凯特智能厨卫股份有限公司 | 螺旋丝杆升降机-SWL蜗轮-滚珠丝杆升降机厂家-山东明泰传动机械有限公司 | 绿萝净除甲醛|深圳除甲醛公司|测甲醛怎么收费|培训机构|电影院|办公室|车内|室内除甲醛案例|原理|方法|价格立马咨询 | 环压强度试验机-拉链拉力试验机-上海倾技仪器仪表科技有限公司 | 3d打印服务,3d打印汽车,三维扫描,硅胶复模,手板,快速模具,深圳市精速三维打印科技有限公司 | 骨密度仪-骨密度测定仪-超声骨密度仪-骨龄测定仪-天津开发区圣鸿医疗器械有限公司 | 咖啡加盟-咖啡店加盟-咖啡西餐厅加盟-塞纳左岸咖啡西餐厅官网 | 盐城网络公司_盐城网站优化_盐城网站建设_盐城市启晨网络科技有限公司 | 陕西视频监控,智能安防监控,安防系统-西安鑫安5A安防工程公司 | 快速门厂家批发_PVC快速卷帘门_高速门_高速卷帘门-广州万盛门业 快干水泥|桥梁伸缩缝止水胶|伸缩缝装置生产厂家-广东广航交通科技有限公司 | 泰兴市热钻机械有限公司-热熔钻孔机-数控热熔钻-热熔钻孔攻牙一体机 | 深圳市源和塑胶电子有限公司-首页 | 环比机械| 实验室装修_实验室设计_实验室规划设计- 上海广建净化工程公司 | 美国PARKER齿轮泵,美国PARKER柱塞泵,美国PARKER叶片泵,美国PARKER电磁阀,美国PARKER比例阀-上海维特锐实业发展有限公司二部 | 深圳市超时尚职业培训学校,培训:月嫂,育婴,养老,家政;化妆,美容,美发,美甲. | 集装箱标准养护室-集装箱移动式养护室-广州璟业试验仪器有限公司 | 定量包装机,颗粒定量包装机,粉剂定量包装机,背封颗粒包装机,定量灌装机-上海铸衡电子科技有限公司 | 发电机组|柴油发电机组-批发,上柴,玉柴,潍柴,康明斯柴油发电机厂家直销 | 艾默生变频器,艾默生ct,变频器,ct驱动器,广州艾默生变频器,供水专用变频器,风机变频器,电梯变频器,艾默生变频器代理-广州市盟雄贸易有限公司官方网站-艾默生变频器应用解决方案服务商 | 杭州画室_十大画室_白墙画室_杭州美术培训_国美附中培训_附中考前培训_升学率高的画室_美术中考集训美术高考集训基地 | 临海涌泉蜜桔官网|涌泉蜜桔微商批发代理|涌泉蜜桔供应链|涌泉蜜桔一件代发 | 高精度-恒温冷水机-螺杆式冰水机-蒸发冷冷水机-北京蓝海神骏科技有限公司 | IHDW_TOSOKU_NEMICON_EHDW系列电子手轮,HC1系列电子手轮-上海莆林电子设备有限公司 |