中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
蛋白質組學:研究方法與實驗方案

包郵 蛋白質組學:研究方法與實驗方案

出版社:科學出版社出版時間:2022-02-01
開本: 其他 頁數: 460
本類榜單:自然科學銷量榜
中 圖 價:¥140.6(7.9折) 定價  ¥178.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

蛋白質組學:研究方法與實驗方案 版權信息

  • ISBN:9787030354334
  • 條形碼:9787030354334 ; 978-7-03-035433-4
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

蛋白質組學:研究方法與實驗方案 內容簡介

隨著“蛋白質組學”這一概念的出現和發展,細胞分子網絡領域的研究取得了巨大的進展,人們對此領域的認識也日益深入。然而,蛋白質的冗余性、動力學特點和互作作用,使相關研究面臨巨大挑戰。在本書中,多位專家闡述了蛋白質組學的各種研究技術,縱覽了本領域各研究方向的難點與可能性,提供了近期新的實驗方案和具體實例。作為《分子生物學方法》系列叢書的一卷,本書簡明易懂,各章均包含針對標題的導言、推薦材料與試劑的清單、分步驟且易于操作的實驗室方案、疑難問題的注意事項和易犯失誤的避免。本書專業非常不錯、易于使用,適合作為實驗室指南用書,可以激發讀者對蛋白質組學這一復雜且重要的領域的研究興趣。

蛋白質組學:研究方法與實驗方案 目錄

目錄
前言 v
撰稿人 ix
**部分 引言
1. 蛋白質組學簡介 3
Friedrich Lottspeich
第二部分 電泳分離
2. 高分辨率二維電泳 13
Walter Weiss and Angelika Gorg
3. 非經典二維電泳 33
JacquelineBurre,Ilka Wittig,and Hermann Schagger
4. 蛋白質檢測與定量技術用于基于凝膠的蛋白質組學分析 59
Walter Weiss,Florian Weiland,and Angelika Gorg
第三部分 質譜和串聯質譜的應用
5. 基質輔助激光解吸電離質譜 85
Rainer Cramer
6. 毛細管電泳質譜聯用應用于人尿液蛋白質組學分析與生物標志物發現 105

traZurbig,Eric Schiffer,and Harald Mischak
7. 多肽納升級液相色譜指南 123
Thomas Frohlich and Georg J.Arnold
8. 多維蛋白鑒定技術 143
Katharina Lohrig and Dirk Wolters
9. 肽段為中心的蛋白質組學技術分析血小板蛋白 155
Oliver Simon,Stefanie Wortelkamp,and Albert Sickmann
10. 高分辨率質譜蛋白質組分析技術鑒定小鼠小腸20S蛋白質組分子組成 173
Reinhold Weber,Regina Preywisch,Nikolay Youhnovski,Marcus Groettrup,and Michael Przybylski
第四部分 蛋白質組學定量技術
11. 基于液相色譜質譜聯用的定量蛋白質組學 189
Michael W.Linscheid,Robert Ahrends,Stefan Pieper,and Andreas Kuhn
12. 膠內酶切同位素標記蛋白質技術用于相對定量 207
Carla Schmidt and Henning Urlaub
13.電噴霧質譜技術用于血漿蛋白質組定量分析 227
Hong Wang and Sam Hanash
第五部分 質譜數據解讀
14. 算法和數據庫 245
Lennart Martens and Rolf Apweiler
15. 鳥槍法蛋白質鑒定和質譜法蛋白質定量 261
Bingwen Lu,Tao Xu,Sung Kyu Park,and John R.Yates III
第六部分 蛋白質修飾分析
16. 腦蛋白氧化修飾蛋白質組學鑒定 291
Rukhsana Sultana,Marz ia Perluigi,and D.Allan Butter field
17.同位素標記、磷酸化多肽親和富集技術用于液相色譜-串聯質譜蛋白質組分析 303
Uma Kota,Ko-yi Chien,and Michael B.Goshe
第七部分 亞細胞蛋白質組學
18. 細胞器蛋白質組學:天然蛋白膠內酶切篩選減少樣本的復雜性 325
Veronika Reisinger and Lutz A.Eichacker
19. 聚合物雙水相系統逆流分配法分離神經系統質膜 335
Jens Schindler and Hans Gerd NothWang
20. 液相色譜串聯質譜技術進行擬南芥蛋白質組分析的質膜蛋白富集和制備 341
Srijeet K.Mitra,Steven D.Clouse,and Michael B.Goshe
第八部分 蛋白質相互作用分析
21.Strep/FLAG(SF)-串聯親和純化標簽用于哺乳動物細胞蛋白質復合物串聯親和純化 359
Christian Johannes Gloeckner,Karsten Boldt,Annette Schumacher,and Marius Ueffing
22. 順序多肽親和純化系統分離和鑒定大腸桿菌蛋白質復合物 373
Mohan Babu,Gareth Butland,Oxana Pogoutse,Joyce Li,Jack F.Greenblatt,and AndreWEmili
23. 生物信息學方法分析蛋白質相互作用 401
Beate Kruger and Thomas Dandekar
索引 433
(宋凱 張春秀 譯)
Contents
Preface. v
Contributors. ix
PART I INTRODUCTION
1. Introduction to Proteomics 3
Friedrich Lottspeich
PART II ELECTROPHORETIC SEPARATIONS
2. High-Resolution Two-Dimensional Electrophoresis 13
Walter Weiss and Angelika Gorg
3. Non-classical 2-D Electrophoresis 33
Jacqueline Burre,Ilka Wittig,and Hermann Sch?gger
4. Protein Detection and Quantitation Technologies for Gel-Based Proteome Analysis 59
Walter Weiss,Florian Weiland,and Angelika Gorg
PART III MASS SPECTROMETRY AND TANDEM MASS SPECTROMETRY APPLICATIONS
5. MALDI MS 85
Rainer Cramer
6. Capillary Electrophoresis Coupled to Mass Spectrometry for Proteomic Profiling of Human Urine and Biomarker Discovery 105

tra Zurbig,Eric Schiffer,and Harald Mischak
7. A Newcomer’s Guide to Nano-Liquid-Chromatography of Peptides 123
Thomas Frohlich and Georg J. Arnold
8. Multidimensional Protein Identification Technology 143
Katharina Lohrig and Dirk Wolters
9. Characterization of Platelet Proteins Using Peptide Centric Proteomics 155
Oliver Simon,Stefanie Wortelkamp,and Albert Sickmann
10. Identification of the Molecular Composition of the 20S Proteasome of Mouse Intestine by High-Resolution Mass Spectrometric Proteome Analysis 173
Reinhold Weber,Regina Preywisch,Nikolay Youhnovski,Marcus Groettrup,and Michael Przybylski
PART IV QUANTITATIVE PROTEOMICS
11. Liquid Chromatography-Mass Spectrometry-Based Quantitative Proteomics. 189
Michael W. Linscheid,Robert Ahrends,Stefan Pieper,and Andreas Kuhn
12. iTRAQ-Labeling of In-Gel Digested Proteins for Relative Quantification 207
Carla Schmidt and Henning Urlaub
13. Electrospray Mass Spectrometry for Quantitative Plasma Proteome Analysis 227
Hong Wang and Sam Hanash
PART V INTERPRETATION OF MASS SPECTROMETRY DATA
14. Algorithms and Databases 245
Lennart Martens and Rolf Apweiler
15. Shotgun Protein Identification and Quantification by Mass Spectrometry 261
Bingwen Lu,Tao Xu,Sung Kyu Park,and John R. Yates III
PART VI ANALYSIS OF PROTEIN MODIFICATIONS
16. Proteomics Identification of Oxidatively Modified Proteins in Brain 291
Rukhsana Sultana,Marzia Perluigi,and D. Allan Butterfield
17. Isotope-Labeling and Affinity Enrichment of Phosphopeptides for Proteomic Analysis Using Liquid Chromatography-Tandem Mass Spectrometry 303
Uma Kota,Ko-yi Chien,and Michael B. Goshe
PART VII SUBCELLULAR PROTEOMICS
18. Organelle Proteomics:Reduction of Sample Complexity by Enzymatic In-Gel Selection of Native Proteins 325
Veronika Reisinger and Lutz A. Eichacker
19. Isolation of Plasma Membranes from the Nervous System by Countercurrent Distribution in Aqueous Polymer Two-Phase Systems 335
Jens Schindler and Hans Gerd Nothwang
20. Enrichment and Preparation of Plasma Membrane Proteins from Arabidopsis thaliana for Global Proteomic Analysis Using Liquid Chromatography-Tandem Mass Spectrometry 341
Srijeet K. Mitra,Steven D

展開全部

蛋白質組學:研究方法與實驗方案 節選

PART I INTRODUCTION Chapter 1 Introduction to Proteomics Friedrich Lottspeich Summary In this chapter, the evolvement of proteomics from classical protein chemistry is depicted. The challenges of complexity and dynamics led to several new approaches and to the firm belief that a valuable proteomics technique has to be quantitative. Protein-based vs. peptide-based techniques, gel-based vs. non-gel-based proteomics, targeted vs. general proteomics, isotopic labeling vs. label-free techniques, and the importance of informatics are summarized and compared. A short outlook into the near future is given at the end of the chapter. Key words: History , Quantitative proteomics , Targeted proteomics , Isotopic labeling , Protein-based proteomics , Peptide-based proteomics 1. The History and the Challenge In the end of the last century, a change of paradigm from the pure function driven biosciences to systematic and holistic approaches has taken place. Following the successful genomics projects, classical protein chemistry has evolved into a high throughput and systematic science, called proteomics. Starting in 1995, the first attempts to deliver a “protein complement of the genome” used the established high-resolving separation techniques like two-dimensional (2D) gel electrophoresis and almost exclusively identified the proteins by the increasingly powerful mass spectrometry. Soon, fundamental and technical challenges were recognized. Unlike the genome, the proteome is dynamic, responding to any change in genetic and environmental parameters. Furthermore, the proteome appears to be orders of magnitude more complex than a genome owing to splicing and editing processes at the RNA level and owing to all the posttranslational events on the protein level, like limited processing, post-translational modifications, and degradation. The situation is even more difficult, since many important proteins are only present in a few copies/cells and have to be identified and quantified in the presence of a large excess of many other proteins. The dynamic range of the abundant and the minor proteins often exceeds the capabilities of all analytical methods. So far, only few solutions are available to handle the complexity and dynamic range. One is to reduce the complexity of the proteome and to separate the low abundant proteins from the more abundant ones. This, for example, can be achieved by multidimensional separation steps. But, unpredictable losses of proteins and a large number of resulting fractions make this approach time-consuming and thus also very costly. Alternatively, the proteome to be investigated can be simplified by starting with a specific biological compartment or by reducing the complexity using a suitable sample preparation (e.g. enzyme ligand chips, functionalized surface chips, class-specific antibodies). Successful examples are the analysis of functional complexes or most interaction proteomics approaches. In another approach, a selective detection is performed, which visualizes only a certain number of proteins that exhibit specific common properties. This can be achieved by antibodies, selective staining protocols, protein ligands, or selective mass spectrometry techniques like MRM (multiple reaction monitoring) or SRM (single reaction monitoring) ( 1 ) . The most straightforward application of this approach is “targeted proteomics,” which monitors a small set of well-known proteins/peptides. However, in the later years of the past century, the main focus of proteomics projects was to decipher the constituents of a proteome. It was realized only slowly that for solving biological problems and realizing the potential of holistic approaches, the changes and the dynamics of changes on the protein level have to be monitored quantitatively. 2. Gel-Based Proteomics Since 1975 by their introduction in by O’Farrel ( 2 ) and Klose ( 3 ) , 2D gels have fascinated many scientists owing to their separation power. The combination of a concentrating technique, i.e. isoelectric focusing, with a separation according to molecular mass, i.e. SDS gel electrophoresis, provides a space for resolving more than 10,000 different compounds. Consequently, 2D gels were the method of choice when dealing with very complex protein mixtures like proteomes. Unfortunately, gel-based proteomics had inherent limitations in reproducibility and dynamic range. Standard operating procedures had to be carefully followed to get almost reproducible results even within one lab. Results produced from identical samples in different labs were hardly comparable on a quantitative level. A significant improvement was the introduction of the DIGE technique (GE Healthcare), a multiplexed fluorescent Cy-Dye staining of different proteome states, which eliminated to a large extent the technical irreproducibility (4) . With the cysteine-modifying “DIGE saturation labeling,” impressive proteome visualizatio

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 水平垂直燃烧试验仪-灼热丝试验仪-漏电起痕试验仪-针焰试验仪-塑料材料燃烧检测设备-IP防水试验机 | 紫外可见光分光度计-紫外分光度计-分光光度仪-屹谱仪器制造(上海)有限公司 | 深圳善跑体育产业集团有限公司_塑胶跑道_人造草坪_运动木地板 | 硅胶管挤出机厂家_硅胶挤出机生产线_硅胶条挤出机_臣泽智能装备 贵州科比特-防雷公司厂家提供贵州防雷工程,防雷检测,防雷接地,防雷设备价格,防雷产品报价服务-贵州防雷检测公司 | 棕刚玉-白刚玉厂家价格_巩义市东翔净水材料厂 | 厦门网站建设_厦门网站设计_小程序开发_网站制作公司【麦格科技】 | 净化车间装修_合肥厂房无尘室设计_合肥工厂洁净工程装修公司-安徽盛世和居装饰 | 电动球阀_不锈钢电动球阀_电动三通球阀_电动调节球阀_上海湖泉阀门有限公司 | 蒸汽热收缩机_蒸汽发生器_塑封机_包膜机_封切收缩机_热收缩包装机_真空机_全自动打包机_捆扎机_封箱机-东莞市中堡智能科技有限公司 | 石牌坊价格石牌坊雕刻制作_石雕牌坊牌楼石栏杆厂家_山东嘉祥石雕有限公司 | 电气控制系统集成商-PLC控制柜变频控制柜-非标自动化定制-电气控制柜成套-NIDEC CT变频器-威肯自动化控制 | 沈飞防静电地板__机房地板-深圳市沈飞防静电设备有限公司 | 金环宇|金环宇电线|金环宇电缆|金环宇电线电缆|深圳市金环宇电线电缆有限公司|金环宇电缆集团 | 卡诺亚轻高定官网_卧室系统_整家定制_定制家居_高端定制_全屋定制加盟_定制家具加盟_定制衣柜加盟 | 电解抛光加工_不锈钢电解抛光_常州安谱金属制品有限公司 | 酵素生产厂家_酵素OEM_酵素加盟_酵素ODM_酵素原料厂家_厦门益力康 | PC构件-PC预制构件-构件设计-建筑预制构件-PC构件厂-锦萧新材料科技(浙江)股份有限公司 | 高低温老化试验机-步入式/低温恒温恒湿试验机-百科 | 实体店商新零售|微赢|波后|波后合作|微赢集团 | 螺杆式冷水机-低温冷水机厂家-冷冻机-风冷式-水冷式冷水机-上海祝松机械有限公司 | 2025第九届世界无人机大会| 工业插头-工业插头插座【厂家】-温州罗曼电气 | 紫外荧光硫分析仪-硫含量分析仪-红外光度测定仪-泰州美旭仪器 | 隧道烘箱_隧道烘箱生产厂家-上海冠顶专业生产烘道设备 | uv固化机-丝印uv机-工业烤箱-五金蚀刻机-分拣输送机 - 保定市丰辉机械设备制造有限公司 | 桥架-槽式电缆桥架-镀锌桥架-托盘式桥架 - 上海亮族电缆桥架制造有限公司 | 书信之家_书信标准模板范文大全| 电销卡 防封电销卡 不封号电销卡 电话销售卡 白名单电销卡 电销系统 外呼系统 | 无尘烘箱_洁净烤箱_真空无氧烤箱_半导体烤箱_电子防潮柜-深圳市怡和兴机电 | 蜘蛛车-高空作业平台-升降机-高空作业车租赁-臂式伸缩臂叉装车-登高车出租厂家 - 普雷斯特机械设备(北京)有限公司 | 胶水,胶粘剂,AB胶,环氧胶,UV胶水,高温胶,快干胶,密封胶,结构胶,电子胶,厌氧胶,高温胶水,电子胶水-东莞聚力-聚厉胶粘 | 交流伺服电机|直流伺服|伺服驱动器|伺服电机-深圳市华科星电气有限公司 | 断桥铝破碎机_铝合金破碎机_废铁金属破碎机-河南鑫世昌机械制造有限公司 | PO膜_灌浆膜及地膜供应厂家 - 青州市鲁谊塑料厂 | 郑州大巴车出租|中巴车租赁|旅游大巴租车|包车|郑州旅游大巴车租赁有限公司 | TPM咨询,精益生产管理,5S,6S现场管理培训_华谋咨询公司 | 山东钢衬塑罐_管道_反应釜厂家-淄博富邦滚塑防腐设备科技有限公司 | 美缝剂_美缝剂厂家_美缝剂加盟-地老板高端瓷砖美缝剂 | 压力变送器-上海武锐自动化设备有限公司 | 合肥卓创建筑装饰,专业办公室装饰、商业空间装修与设计。 | 翰香原枣子坊加盟费多少钱-正宗枣核糕配方培训利润高飘香 |