中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
偏好空間同位模式挖掘

包郵 偏好空間同位模式挖掘

作者:王麗珍
出版社:科學出版社出版時間:2022-01-01
開本: 16開 頁數: 294
中 圖 價:¥156.4(7.9折) 定價  ¥198.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

偏好空間同位模式挖掘 版權信息

  • ISBN:9787030713728
  • 條形碼:9787030713728 ; 978-7-03-071372-8
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

偏好空間同位模式挖掘 內容簡介

本書以應用需求(領域驅動)為導向,系統介紹了本書作者多年在領域驅動空間模式挖掘技術方面的研究成果。具體包括不需要距離閾值的空間co-location模式挖掘技術、極大頻繁空間co-location模式挖掘技術、極大亞頻繁空間co-location模式挖掘技術、SPI-閉頻繁co-location模式挖掘技術、非冗余co-location模式挖掘技術、高效用co-location模式挖掘技術、實例帶效用的高效用co-location模式挖掘技術、帶特征的頻繁co-location模式挖掘技術和基于概率模型的交互式二次挖掘用戶感興趣的co-location模式挖掘技術等。

偏好空間同位模式挖掘 目錄

Contents
1 Introduction 1
1.1 The Background and Applications 1
1.2 The Evolution and Development 5
1.3 The Challenges and Issues 7
1.4 Content and Organization of the Book 8
2 Maximal Prevalent Co-location Patterns 11
2.1 Introduction 11
2.2 Why the MCHT Method Is Proposed for Mining MPCPs 12
2.3 Formal Problem Statement and Appropriate Mining Framework 17
2.3.1 Co-Location Patterns 17
2.3.2 Related Work 19
2.3.3 Contributions and Novelties 21
2.4 The Novel Mining Solution 22
2.4.1 The Overall Mining Framework 22
2.4.2 Bit-String-Based Maximal Clique Enumeration 23
2.4.3 Constructing the Participating Instance Hash Table 28
2.4.4 Calculating Participation Indexes and Filtering MPCPs 30
2.4.5 The Analysis of Time and Space Complexities 32
2.5 Experiments 33
2.5.1 Data Sets 33
2.5.2 Experimental Objectives 34
2.5.3 Experimental Results and Analysis 34
2.6 Chapter Summary 47
3 Maximal Sub-prevalent Co-location Patterns 49
3.1 Introduction 49
3.2 Basic Concepts and Properties 51
3.3 A Prefix-Tree-Based Algorithm (PTBA) 54
3.3.1 Basic Idea 54
3.3.2 Algorithm 56
3.3.3 Analysis and Pruning 57
3.4 A Partition-Based Algorithm (PBA) 58
3.4.1 Basic Idea 58
3.4.2 Algorithm 62
3.4.3 Analysis of Computational Complexity 64
3.5 Comparison of PBA and PTBA 64
3.6 Experimental Evaluation 66
3.6.1 Synthetic Data Generation 67
3.6.2 Comparison of Computational Complexity Factors 67
3.6.3 Comparison of Expected Costs Involved in Identifying Candidates 69
3.6.4 Comparison of Candidate Pruning Ratio 69
3.6.5 Effects of the Parameter Clumpy 70
3.6.6 Scalability Tests 70
3.6.7 Evaluation with Real Data Sets 72
3.7 Related Work 75
3.8 Chapter Summary 77
4 SPI-Closed Prevalent Co-location Patterns 79
4.1 Introduction 79
4.2 Why SPI-Closed Prevalent Co-locations Improve Mining 81
4.3 The Concept of SPI-Closed and Its Properties 83
4.3.1 Classic Co-location Pattern Mining 83
4.3.2 The Concept of SPI-Closed 85
4.3.3 The Properties of SPI-Closed 86
4.4 SPI-Closed Miner 89
4.4.1 Preprocessing and Candidate Generation 89
4.4.2 Computing Co-location Instances and Their PI Values 93
4.4.3 The SPI-Closed Miner 93
4.5 Qualitative Analysis of the SPI-Closed Miner 95
4.5.1 Discovering the Correct SPI-Closed Co-location Set Ω 96
4.5.2 The Running Time of SPI-Closed Miner 96
4.6 Experimental Evaluation 96
4.6.1 Experiments on Real-life Data Sets 97
4.6.2 Experiments with Synthetic Data Sets 100
4.7 Related Work 104
4.8 Chapter Summary 105
5 Top-k Probabilistically Prevalent Co-location Patterns 107
5.1 Introduction 107
5.2 Why Mining Top-k Probabilistically Prevalent Co-location Patterns (Top-k PPCPs) 108
5.3 Definitions 110
5.3.1 Spatially Uncertain Data 110
5.3.2 Prevalent Co-locations 112
5.3.3 Prevalence Probability 113
5.3.4 Min_PI-Prevalence Probabilities 114
5.3.5 Top-k PPCPs 115
5.4 A Framework of Mining Top-k PPCPs 115
5.4.1 Basic Algorithm 115
5.4.2 Analysis and Pruning of Algorithm 5.1 116
5.5 Improved Computation of P(c, min_PI) 117
5.5.1 0-1-Optimization 117
5.5.2 The Matrix Method 118
5.5.3 Polynomial Matrices 122
5.6 Approximate Computation of P(c, min_PI) 125
5.7 Experimental Evaluations 128
5.7.1 Evaluation on Synthetic Data Sets 128
5.7.2 Evaluation on Real Data Sets 134
5.8 Chapter Summary 136
6 Non-redundant Prevalent Co-location Patterns 137
6.1 Introduction 137
6.2 Why We Need to Explore Non-redundant Prevalent Co-locations 139
6.3 Problem Definition 141
6.3.1 Semantic Distance 141
6.3.2 δ-Covered 143
6.3.3 The Problem Definition and Analysis 145
6.4 The RRclosed Method 148
6.5 The RRnull Method 150
6.5.1 The Method 150
6.5.2 The Algorithm 153
6.5.3 The Correctness Analysis 155
6.5.4 The Time Complexity Analysis 156
6.5.5 Comparative Analysis 157
6.6 Experimental Results 158
6.6.1 On the Three Real Data Sets 158
6.6.2 On the Synthetic Data Sets 161
6.7 Related Work 165
6.8 Chapter Summary 166
7 Dominant Spatial Co-location Patterns 167
7.1 Introduction 167
7.2 Why Dominant SCPs Are Useful to Mine 168
7.3 Related Work 171
7.4 Preliminaries and Problem Formulation 172
7.4.1 Preliminaries 173
7.4.2 Definitions 174
7.4.3 Formal Problem Formulation 179
7.4.4 Discussion of Progress 179
7.5 Proposed Algorithm for Mining Dominant SCPs 180
7.5.1 Basic Algorithm for Mining Dominant SCPs 180
7.5.2 Pruning Strategies 182
7.5.3 An Improved Algorithm 186
7.5.4 Comparison of Complexity 187
7.6 Experimental Study 188
7.6.1 Data Sets 188
7.6.2 Efficiency 189
7.6.3 Effectiveness 193
7.6.4 Real Applications 196
7.7 Chapter Summary 198
8 High Utility Co-location Patterns 201
8.1 Introduction 201
8.2 Why We Need High Utility Co-location Pattern Mining 202
8.3 Related W
展開全部

偏好空間同位模式挖掘 節選

Chapter 1 Introduction As application areas such as earth science, public health, public transportation, environmental management, social media services, location services, multimedia, and so on started to produce large and rich datasets, it quickly became clear that there was potentially valuable knowledge embedded in this data in the form of various spatial features. Spatial co-location pattern mining developed to identify these interesting but hidden relationships between spatial features (Shekhar & Huang, 2001; Huang et al., 2004; Shekhar et al., 2015). Spatial co-location patterns (SCPs) represent subsets of spatial features (spatial objects, events, or attributes), and SCP mining is essential to reveal the frequent co-occurrence patterns among spatial features in various applications. For example, these techniques can show that West Nile virus usually appears in areas where mosquitoes are abundant and poultry are kept; or that botanists discover that 80% of sub-humid evergreen broadleaved forests grow with orchid plants (Wang et al., 2009b). In this chapter, we .rst brie.y look at the emergence, evolution, and development of SCP mining; summarize the current major challenges and issues troubling SCP mining techniques; and indicate how preference-based SCP mining may be the future. Finally, an overview picture of the related content of the book is given and the topics that will be covered in each chapter are brie.y introduced. 1.1 The Background and Applications The emergence of SCP mining techniques has been driven by three forces: First, with the development of general data mining techniques, the mined objects extended from the initial relational and transactional data to spatial data. Spatial data has become important and widely used data, containing richer and more complex information than the traditional relation-based or transaction-based data. Although general data mining originated in relational and transactional databases, the rich knowledge discovery from spatial databases has brought attention to the available research on SCP data mining. Second, areas such as mobile computing, scienti.c simulations, business science, environmental observation, climate measurements, geographic search logs, and so on are continually producing enormous quantities of rich spatial data. Manual analysis of these large spatial datasets is impractical, and there is a consequent need for ef.cient computational analysis techniques for the automatic extraction of the potentially valuable information. The emergence of data mining and knowledge discovery would have been very constrained without the development of geo-spatial data analysis. Third, differently to traditional data, spatial data is often inherently related, so the closer is the location of two spatial objects, the more likely they are to have similar properties. For example, the closer the geographical locations of cities are, the more similar they are in natural resources, climate, temperature, and economic status. However, because spatial data is combined with other characteristics in massive, multi-dimension databases, possibly with uncertainty, it is necessary to use speci.c and targeted techniques. At its simplest, spatial co-location pattern discovery is directed toward processing data with spatial contexts to .nd subsets of spatial features that are frequently located together. Spatial co-location pattern (SCP) mining, as one important area in spatial data mining, has been extensively researched for the past twenty years (Shekhar & Huang, 2001; Huang et al., 2004; Huang et al., 2008; Yoo et al., 2004, Yoo & Shekhar, 2006; Celik et al., 2007; Lin and Lim, 2008; Xiao et al., 2008; Wang et al., 2008; Wang et al., 2009a, b; Yoo & Bow, 2011a, b, 2012, 2019; Wang et al., 2013a, b; Barua & Sander, 2014; Qian et al., 2014; Andrzejewski & Boinski, 2015; Li et al., 2016; Zhao et al., 2016; Ouyang et al., 2017; Wang et al., 2018a, 2018b, c; Yao et al., 2018; Bao & Wang, 2019; Ge et al., 2021; Yoo et al., 2014, 2020; Liu et al., 2020; Yao et al., 2021). An early paper described “a set of spatial features (spatial objects, events, or attributes) which are frequently observed together in a spatial proximity.” They also de.ned a distance-based interest measure called the participation index to assess the prevalence of a co-location and some of the basic nomenclature which has been used ever since. Let F be the set of spatial features, S be the set of spatial instances. For a feature f2F, the set of all instances of f is denoted as N( f ). Let R be a neighbor relationship over pairwise instances. Given two instances i2S, i’2S, we say they have neighbor relationship if the distance between them is no larger than a user-speci.ed distance threshold d, i.e., R(i,io’) , distance(i, i’)三 d.A co-location c is a subset of the feature set F, c . F. The number of features in c is call

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 车件|铜件|车削件|车床加工|五金冲压件-PIN针,精密车件定制专业厂商【东莞品晔】 | 123悬赏网_发布悬赏任务_广告任务平台 | 宝元数控系统|对刀仪厂家|东莞机器人控制系统|东莞安川伺服-【鑫天驰智能科技】 | 金属雕花板_厂家直销_价格低-山东慧诚建筑材料有限公司 | 塑胶跑道施工-硅pu篮球场施工-塑胶网球场建造-丙烯酸球场材料厂家-奥茵 | PCB厂|线路板厂|深圳线路板厂|软硬结合板厂|电路板生产厂家|线路板|深圳电路板厂家|铝基板厂家|深联电路-专业生产PCB研发制造 | (中山|佛山|江门)环氧地坪漆,停车场地板漆,车库地板漆,聚氨酯地板漆-中山永旺地坪漆厂家 | 塑料脸盆批发,塑料盆生产厂家,临沂塑料广告盆,临沂家用塑料盆-临沂市永顺塑业 | 西安中国国际旅行社(西安国旅)| Magnescale探规,Magnescale磁栅尺,Magnescale传感器,Magnescale测厚仪,Mitutoyo光栅尺,笔式位移传感器-苏州连达精密量仪有限公司 | 小型气象站_车载气象站_便携气象站-山东风途物联网 | 昆明网络公司|云南网络公司|昆明网站建设公司|昆明网页设计|云南网站制作|新媒体运营公司|APP开发|小程序研发|尽在昆明奥远科技有限公司 | 电动百叶窗,开窗器,电动遮阳百叶,电动开窗机生产厂家-徐州鑫友工控科技发展有限公司 | 兰州UPS电源,兰州山特UPS-兰州万胜商贸 | MTK核心板|MTK开发板|MTK模块|4G核心板|4G模块|5G核心板|5G模块|安卓核心板|安卓模块|高通核心板-深圳市新移科技有限公司 | 聚氨酯保温钢管_聚氨酯直埋保温管道_聚氨酯发泡保温管厂家-沧州万荣防腐保温管道有限公司 | 雷蒙磨,雷蒙磨粉机,雷蒙磨机 - 巩义市大峪沟高峰机械厂 | 江苏全风,高压风机,全风环保风机,全风环形高压风机,防爆高压风机厂家-江苏全风环保科技有限公司(官网) | 武汉高低温试验机-现货恒温恒湿试验箱-高低温湿热交变箱价格-湖北高天试验设备 | 玻纤土工格栅_钢塑格栅_PP焊接_单双向塑料土工格栅_复合防裂布厂家_山东大庚工程材料科技有限公司 | 昊宇水工|河北昊宇水工机械工程有限公司 | IWIS链条代理-ALPS耦合透镜-硅烷预处理剂-上海顶楚电子有限公司 lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 剪刃_纵剪机刀片_分条机刀片-南京雷德机械有限公司 | 消泡剂-水处理消泡剂-涂料消泡剂-切削液消泡剂价格-东莞德丰消泡剂厂家 | 挤出机_橡胶挤出机_塑料挤出机_胶片冷却机-河北伟源橡塑设备有限公司 | 锂电混合机-新能源混合机-正极材料混料机-高镍,三元材料混料机-负极,包覆混合机-贝尔专业混合混料搅拌机械系统设备厂家 | 原色会计-合肥注册公司_合肥代理记账公司_营业执照代办 | 太阳能发电系统-太阳能逆变器,控制器-河北沐天太阳能科技首页 | 上海阳光泵业制造有限公司 -【官方网站】 | 协议书_协议合同格式模板范本大全 | 粉末冶金注射成型厂家|MIM厂家|粉末冶金齿轮|MIM零件-深圳市新泰兴精密科技 | 大巴租车平台承接包车,通勤班车,巴士租赁业务 - 鸿鸣巴士 | 合肥触摸一体机_触摸查询机厂家_合肥拼接屏-安徽迅博智能科技 | 真空搅拌机-行星搅拌机-双行星动力混合机-广州市番禺区源创化工设备厂 | 优考试_免费在线考试系统_培训考试系统_题库系统_组卷答题系统_匡优考试 | 底部填充胶_电子封装胶_芯片封装胶_芯片底部填充胶厂家-东莞汉思新材料 | 苏州教学设备-化工教学设备-环境工程教学模型|同科教仪 | 执业药师报名时间,报考条件,考试时间-首页入口 | 垃圾处理设备_餐厨垃圾处理设备_厨余垃圾处理设备_果蔬垃圾处理设备-深圳市三盛环保科技有限公司 | 济南玻璃安装_济南玻璃门_济南感应门_济南玻璃隔断_济南玻璃门维修_济南镜片安装_济南肯德基门_济南高隔间-济南凯轩鹏宇玻璃有限公司 |