中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
番茄采摘機器人快速無損作業研究(英文版)

包郵 番茄采摘機器人快速無損作業研究(英文版)

出版社:科學出版社出版時間:2021-12-01
開本: B5 頁數: 464
本類榜單:教材銷量榜
中 圖 價:¥224.3(7.5折) 定價  ¥299.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

番茄采摘機器人快速無損作業研究(英文版) 版權信息

番茄采摘機器人快速無損作業研究(英文版) 本書特色

適讀人群 :廣大機器人技術愛好者和研發人員本書內容面廣,體系鮮明,反映我國智能農業領域的**研究進展,而又注重讀者廣度與學術深度的結合,值得閱讀

番茄采摘機器人快速無損作業研究(英文版) 內容簡介

在我國農業快速步入全面機械化的背景下,果蔬生產作業的機械化仍存在大量空白,而鮮食果蔬的采收更占用高達40%的勞動力,采摘機器人技術研究具有重要的科學價值和現實意義。本書闡述優選采摘機器人研究的進展與進程,并針對困擾機器人采摘作業中果實損傷與作業效率的關鍵矛盾,提出機器人快速采摘中的夾持碰撞與快速無損收獲問題,進而通過力學特性與互作規律、建模仿真、設計方法、樣機開發、控制優化的有機結合,系統開展番茄果實宏微本構特征、無損采摘機器人系統開發、勃彈對象的夾持碰撞規律、快速柔順夾持建模仿真、真空吸持拉動的植株-果實響應、植物體激光切割、快速無損采摘控制優化等研究,有力地推動機器人采摘技術的進步。

番茄采摘機器人快速無損作業研究(英文版) 目錄

Contents
Chapter 1 History and Present Situations of Robotic Harvesting Technology: A Review 1
1.1 An Industry of Fresh-Eat Fruits and Vegetables and Its Labor-Cost Harvesting 1
1.2 The History and Current Situation of the Development of Robotic Harvesting Equipment in the Whole World 2
1.2.1 Tomato Harvesting Robots 2
1.2.2 Fruit Harvesting Robot for Orchards 15
1.2.3 Harvesting Robots for Fruits and Vegetables 38
1.2.4 Other Fruit Harvesting Robots 65
1.2.5 Other Harvesting Robots 74
1.3 Summary and Prospect 88
1.3.1 The Continuous Progress of Robotic Harvesting Technology 88
1.3.2 Technical Keys to the Development of Harvesting Robot Technology 89
1.3.3 The Historical Characteristics of the Technology Development of the Harvesting Robots 90
1.3.4 The Breakthrough Points of the Technology Development of Harvesting Robots 93
1.3.5 Key Fields of Technology Development of Harvesting Robots 95
References 95
Chapter 2 Damage and Damage-Free Harvesting in Robotic Operation 107
2.1 Cause of Fruit Damage in Robot Harvesting 107
2.2 Passive Compliant Structure in Robotic Harvesting 108
2.2.1 Elastic Surface Material 108
2.2.2 Under-Actuated End-Effectors 110
2.2.3 Elastic-Medium Fingers 112
2.3 Active Compliance Control in Robotic Harvesting 114
2.4 The Robotic Speedy Damage-Free Harvesting 118
2.4.1 The Significance and Particularity of Robotic Speedy Damage-Free Harvesting 118
2.4.2 The Particularity of the Collision in Robotic Speedy Gripping of Fruit 120
2.4.3 The Research System of Speedy Damage-Free Harvesting 121
References 123
Chapter 3 The Physical and Mechanical Properties of Tomato Fruit and Stem 127
3.1 Summary 127
3.1.1 Research Significance 127
3.1.2 Content and Innovation 127
3.2 The Physical/Mechanical Properties Index System of Tomato Fruit-Stem Related to Robotic Harvesting 128
3.3 Physical Properties of Tomato Fruit and Stem 129
3.3.1 Structure of Tomato Fruit and Stem 129
3.3.2 Physical Property of Tomato Fruit and Stem 131
3.4 Mechanical Properties of Tomato Fruit Components 134
3.4.1 Material, Equipment, and Method 134
3.4.2 Results and Analysis 143
3.5 Compressive Mechanical Properties of the Whole Tomato 148
3.5.1 The Compression Force-Deformation Properties 148
3.5.2 Creep Properties 153
3.5.3 Stress Relaxation Properties 155
3.5.4 Load-Unload Properties 157
3.6 Frictional Mechanical Properties of Tomato Fruits 160
3.6.1 Static and Sliding Friction Coefficients 160
3.6.2 Measurement of Rolling Resistance Coefficient 163
3.7 Mechanical Structure Model of the Whole Tomato Fruit 164
3.7.1 The Wheel-like Simplification Mechanical Structure of Fruit 164
3.7.2 Mechanical Properties of Tomatoes with Different Numbers of Locules 166
3.8 Mechanical Damage in Tomato Fruits 176
3.8.1 Mechanical Damage Mechanism of Tomato Fruit 176
3.8.2 Physiological Change of Tomatoes After Being Compress 176
3.9 The Properties of Tomato Stem 184
3.9.1 Stem System 184
3.9.2 Mechanical Properties of Tomato Fruit System 186
3.9.3 Results 190
References 192
Chapter 4 Development of Damage-Free Hand-Arm System for Tomato Harvesting 197
4.1.1 Research Significance 197
4.1.2 Content and Innovation 197
4.2 Development of Damage-Free Harvesting End-Effector 198
4.2.1 System Scheme Design of Damage-Free Harvesting End-Effector 198
4.3 Motion Configuration Scheme 199
4.4 System Components of the End-Effector 213
4.4.1 Mechanism Design of End-Effector 214
4.4.2 Design of the Sensing System 223
4.4.3 Design of Control System 225
4.4.4 Design of Power Supply System 228
4.4.5 Structure Design of the End-Effector 230
4.4.6 Prototype and Its Performance Indicators 231
4.4.7 Upper Lower Type End-Effector 233
4.4.8 Passive-active Coupled Compliant End-Effector for Robot Tomato Harvesting 233
4.5 Damage-Free Harvesting Hand-arm System Based on Commercial Manipulator 236
4.5.1 Background and Needs 236
4.5.2 The Control System Structure of Commercial Manipulator 237
4.5.3 Control System Integration Between the Manipulator and the End-Effector 239
References 241
Chapter 5 Mathematical Modeling of Speedy Damage-Free Gripping of Fruit 247
5.1 Summary 247
5.1.1 Research Significance 247
5.1.2 Content and Innovation 247
5.2 Experiment of Speedy Fruit Gripping and Special Collision Characteristics 248
5.2.1 Experiment of Speedy Fruit Gripping 248
5.2.2 Collision Characteristics of Speedy Fruit Gripping 248
5.3 The Special Collision Issue of Speedy Fruit Gripping 250
5.4 Dynamic Characteristics in Different Phases of Speedy Fruit Gripping 250
5.5 Fruit Compression Model 252
5.5.1 The Viscoelastic Properties of Fruit and the Characterization of Constitutive Model 252
5.5.2 Burger’s Modified Model for Characterization of Creep Properties of Whole Fruit 256
5.6 Complex Collision M
展開全部

番茄采摘機器人快速無損作業研究(英文版) 節選

Chapter 1 History and Present Situations of Robotic Harvesting Technology: A Review 1.1 An Industry of Fresh-Eat Fruits and Vegetables and Its Labor-Cost Harvesting Fruits and vegetables are both daily necessities, and also they are important economiccrops. According to the statistics, the global production of total fruits and vegetablesin 2019 reached 8.83 x l08 t and 11.30 x l08 t, respectively.Globally, the rate betweenfresh-eat and processed fruits and vegetables is about 7:3.Chinese vegetable and fruitplanting area and output both rank the first in the world, but the proportion ofprocessing fruits and vegetables is only about 5%. Usually, it is not necessary for the harvesting of processing fruits and vegetablesto distinguish the ripeness, and also a certain damage is tolerant in the harvest. Forexample, tomato fruit can be whole-plant harvested and apple fruit can be harvestedmechanically by vibratory excitation.ln developed countries, the non-selective mech-anized harvesting of processed fruits and vegetables has been gradually popularized.But for the larger proportion of fresh-eat fruits and vegetables, the non-selectivemechanized harvesting method cannot adapt to both the individual difference of thefruit maturity and the harsh demand of non-destructive harvest. So far, it is stilldependent on human labor for selective harvesting. With the gradual mechaniza-tion of the production of fruit and vegetable cultivation, harvesting has become thelast link to break through the whole process of mechanical operation. According tothe investigation, the labor consumption of strawberry production in Japan reaches20,000 h/ha [11, and the harvest takes up about 40% of the totallabor amount [1,2].Meanwhile, the shortage of agricultural labor and the rising cost oflabor haveseriously affected the development of the fruit and vegetable industry. In China, inrecent years, the labor force, especially the young and middle-aged labor force, hasalso been rapidly transferred to other industries. In the busy farming season, the laborshortage has begun to appear in the vast rural areas. The labor intensity of the elderlyand women in rural areas has greatly increased, and the production efficiency hasdecreased obviously. The contradiction between the rapid development of fruit and vegetable produc-tion, the shortage of agricultural labor, and the excessive intensity of labor isbecoming more and more obvious, and the replacement of complex manual selectiveharvesting can only be realized through the in-depth study of the technology of theharvesting robot. The research and development of fruit and vegetable harvestingrobot are of great significance for reducing the labor intensity of agricultural practi-tioners,liberating the agriculturallabor force andimproving the intensive productionlevel of fruits and vegetables. 1.2 The History and Current Situation of the Development of Robotic Harvesting Equipment in the Whole World A typical harvesting robot for fruits or vegetables is usually composed of mobileplatform, manipulator, end-effector, vision system, and control system. Since fruitand vegetable species and varieties, and cultivation patterns are all numerous andcomplicated, various kinds of harvesting robots and their end-effectors have beendeveloped at home and abroad. The action principle, structure form, complexity,operation effect, and performance also have a very big difference. 1.2.1 Tomato Harvesting Robots 1. Fresh-eat tomato and its robotic harvesting problem As a favorite fresh-eat vegetable, its robotic harvesting has been paid much attentionby researchers worldwide. Concerned research has been camed out continuously formany years, and a series of achievements have been produced. At the same time, the tomato is also one of the fruits and vegetables that are mostdifficult to be harvested by robots. At present, in the face of fresh food, commontomato fruits are usually picked as single fruit one by one, while cherry-tomatofruit is usually picked in clusters. Compared with cucumber, eggplant, apple, andother fruits and vegetables, there is usually 3-5 tomato fruit in one cluster. Theygrow densely and touch each other, and the difference of fruit-stem posture is moresignificant (Fig. 1.1). The great difference of growth posture and distribution posesa greater challenge to the implementation ofintelligent robotic harvesting: (1) Recognition of the target fruit The close and occlusion of the fruit are more serious. For the vision system of theharvesting robot, although the color difference between mature tomato fruit andleaves is distinct, it is difficult to identify and locate the target fruit since multiplefruit images are integrated into one or even completely overlapped to be difficult tobe segmented [3, 4]. Fig. 1.1 Difference of growth posture and distribution among the fruit of tomato, cucumber, and Eggplant (a) Tomato (b) Cucumber (c) Eggplan

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 渣土车电机,太阳能跟踪器电机,蜗轮蜗杆减速电机厂家-淄博传强电机 | 权威废金属|废塑料|废纸|废铜|废钢价格|再生资源回收行情报价中心-中废网 | 紫外可见光分光度计-紫外分光度计-分光光度仪-屹谱仪器制造(上海)有限公司 | 专业广州网站建设,微信小程序开发,一物一码和NFC应用开发、物联网、外贸商城、定制系统和APP开发【致茂网络】 | 模型公司_模型制作_沙盘模型报价-中国模型网 | 智能垃圾箱|垃圾房|垃圾分类亭|垃圾分类箱专业生产厂家定做-宿迁市传宇环保设备有限公司 | 空调风机,低噪声离心式通风机,不锈钢防爆风机,前倾皮带传动风机,后倾空调风机-山东捷风风机有限公司 | 胜为光纤光缆_光纤跳线_单模尾纤_光纤收发器_ODF光纤配线架厂家直销_北京睿创胜为科技有限公司 - 北京睿创胜为科技有限公司 | 山东商品混凝土搅拌楼-环保型搅拌站-拌合站-分体仓-搅拌机厂家-天宇 | 英思科GTD-3000EX(美国英思科气体检测仪MX4MX6)百科-北京嘉华众信科技有限公司 | 电解抛光加工_不锈钢电解抛光_常州安谱金属制品有限公司 | uv固化机-丝印uv机-工业烤箱-五金蚀刻机-分拣输送机 - 保定市丰辉机械设备制造有限公司 | 水上浮桥-游艇码头-浮动码头-游船码头-码瑞纳游艇码头工程 | 便携式谷丙转氨酶检测仪|华图生物科技百科 | 免费个人pos机申请办理-移动pos机刷卡-聚合收款码办理 | 量子管通环-自清洗过滤器-全自动反冲洗过滤器-北京罗伦过滤技术集团有限公司 | 超声波清洗机_超声波清洗机设备_超声波清洗机厂家_鼎泰恒胜 | 新车测评网_网罗汽车评测资讯_汽车评测门户报道 | 搜活动房网—活动房_集装箱活动房_集成房屋_活动房屋 | 浇注料-高铝砖耐火砖-郑州凯瑞得窑炉耐火材料有限公司 | 合肥抖音SEO网站优化-网站建设-网络推广营销公司-百度爱采购-安徽企匠科技 | 517瓜水果特产网|一个专注特产好物的网站 | 信阳网站建设专家-信阳时代网联-【信阳网站建设百度推广优质服务提供商】信阳网站建设|信阳网络公司|信阳网络营销推广 | 不锈钢/气体/液体玻璃转子流量计(防腐,选型,规格)-常州天晟热工仪表有限公司【官网】 | 衬四氟_衬氟储罐_四氟储罐-无锡市氟瑞特防腐科技有限公司 | 诺冠气动元件,诺冠电磁阀,海隆防爆阀,norgren气缸-山东锦隆自动化科技有限公司 | 经济师考试_2025中级经济师报名时间_报名入口_考试时间_华课网校经济师培训网站 | 自动钻孔机-全自动数控钻孔机生产厂家-多米(广东)智能装备有限公司 | 恒湿机_除湿加湿一体机_恒湿净化消毒一体机厂家-杭州英腾电器有限公司 | 精密机械零件加工_CNC加工_精密加工_数控车床加工_精密机械加工_机械零部件加工厂 | 长沙一级消防工程公司_智能化弱电_机电安装_亮化工程专业施工承包_湖南公共安全工程有限公司 | 半自动预灌装机,卡式瓶灌装机,注射器灌装机,给药器灌装机,大输液灌装机,西林瓶灌装机-长沙一星制药机械有限公司 | 医养体检包_公卫随访箱_慢病随访包_家签随访包_随访一体机-济南易享医疗科技有限公司 | 集装袋吨袋生产厂家-噸袋廠傢-塑料编织袋-纸塑复合袋-二手吨袋-太空袋-曹县建烨包装 | 消电检公司,消电检价格,北京消电检报告-北京设施检测公司-亿杰(北京)消防工程有限公司 | 中高频感应加热设备|高频淬火设备|超音频感应加热电源|不锈钢管光亮退火机|真空管烤消设备 - 郑州蓝硕工业炉设备有限公司 | 安徽合肥项目申报咨询公司_安徽合肥高新企业项目申报_安徽省科技项目申报代理 | ★济南领跃标识制作公司★济南标识制作,标牌制作,山东标识制作,济南标牌厂 | 深圳美安可自动化设备有限公司,喷码机,定制喷码机,二维码喷码机,深圳喷码机,纸箱喷码机,东莞喷码机 UV喷码机,日期喷码机,鸡蛋喷码机,管芯喷码机,管内壁喷码机,喷码机厂家 | 交变/复合盐雾试验箱-高低温冲击试验箱_安奈设备产品供应杭州/江苏南京/安徽马鞍山合肥等全国各地 | 卓能JOINTLEAN端子连接器厂家-专业提供PCB接线端子|轨道式端子|重载连接器|欧式连接器等电气连接产品和服务 |