中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
通信約束下復雜網絡化系統的群體行為(英文版)

包郵 通信約束下復雜網絡化系統的群體行為(英文版)

作者:盧劍權
出版社:科學出版社出版時間:2021-08-01
開本: B5 頁數: 260
中 圖 價:¥125.6(7.9折) 定價  ¥159.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

通信約束下復雜網絡化系統的群體行為(英文版) 版權信息

  • ISBN:9787030693846
  • 條形碼:9787030693846 ; 978-7-03-069384-6
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

通信約束下復雜網絡化系統的群體行為(英文版) 本書特色

書中內容被諸多學者引用和關注,推動網絡群體行為和網絡群體智能的發展和融合

通信約束下復雜網絡化系統的群體行為(英文版) 內容簡介

對網絡群體行為的研究已經成為已成為21世紀網絡科學研究的熱門問題。在網絡化系統中,由于節點間的信息傳遞,系統整體會呈現出群體行為,比如同步或一致性。需要指出的是,網絡的鄰居節點之間的信息傳輸總是不完美的。比如任何通訊網絡在單位時間內傳輸的信息都是有限的并且由于碰撞等因素也會導致數據的丟失,并且信息在傳遞時,延時等通信也不可避免的存在。另外,網絡中的每個節點在信息傳輸時也會受到在線資源等能量的。所以,對于真實環境中的復雜網絡,在信息傳輸中充分考慮能量、延時、丟包和帶寬(量化),尋找網絡達到同步與一致性的條件就成為亟需解決的問題。由此出發,本書主要尋求建立一些統一的框架來研究這類問題。本書包括10章,章概述復雜網絡和復雜系統動力學模型以及群體行為的定義。第二章和第三章分別探討帶有延時的一般動力學網絡的指數同步和一致性問題。第四章和第五章分別針對連續和離散的多智能體網絡給出了在一致性研究中處理延時和量化信號的統一方法。第六章、第七章和第十章主要研究了帶有能量約束和延時信息的網絡一致性問題。第八章和第九章主要研究了帶有脈沖信號的耦合網絡的同步問題。

通信約束下復雜網絡化系統的群體行為(英文版) 目錄

Contents
Preface
List of Symbols
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research problems 3
1.2.1 Consensus and practical consensus 6
1.2.2 General model description 6
1.3 Mathematical preliminaries 8
1.3.1 Matrices and graphs 8
1.3.2 Signed graphs 9
1.3.3 Quantizer 11
1.3.4 Discontinuous differential equations 12
1.3.5 Some lemmas 13
References 14
Chapter 2 Consensus over Directed Static Networks with Arbitrary Finite Communication Delays 20
2.1 Linear coupling 21
2.1.1 The case of leaderless 21
2.1.2 The case with one well-informed leader 23
2.2 Nonlinear coupling 25
2.3 Hierarchical structure 27
2.4 Numerical examples 28
2.5 Summary 32
References 32
Chapter 3 Practical Consensus of Multi-Agent Networks with Communication Constraints 35
3.1 Practical consensus with quantized data 36
3.1.1 Model description 36
3.1.2 Finite-time practical consensus under quantization 37
3.1.3 Numerical example 41
3.2 Consensus with hybrid communication constraints 42
3.2.1 Model description and preliminaries 42
3.2.2 The existence of the Filippov solution 43
3.2.3 Practical consensus under quantization and time delay 46
3.2.4 Numerical example 59
3.2.5 Discussions 61
3.3 Summary 64
References 65
Chapter 4 Multi-Agent Consensus with Quantization and Communication Delays 67
4.1 Discrete-time case 67
4.1.1 Model description 68
4.1.2 Main results 68
4.1.3 Numerical example 73
4.2 Continuous-time case 74
4.2.1 Model description and preliminaries 74
4.2.2 The existence of the Filippov solution 75
4.2.3 Consensus analysis under quantization and time delays 77
4.2.4 Numerical example 86
4.3 Summary 87
References 87
Chapter 5 Event-Based Network Consensus with Communication Delays 89
5.1 Distributed discrete-time event-triggered consensus with delays 89
5.1.1 Model description 90
5.1.2 Distributed event-triggered approach 91
5.1.3 Numerical example 97
5.2 Distributed continuous-time event-triggered consensus with delays 99
5.2.1 Model description 99
5.2.2 Asynchronously distributed event-triggered approach 100
5.2.3 Synchronously event-triggered control 107
5.2.4 Numerical example 110
5.3 Summary 111
References 112
Chapter 6 Consensus of Networked Multi-Agent Systems with Antagonistic Interactions and Communication Delays 114
6.1 Continuous-time multi-agent consensus 115
6.1.1 Linear coupling 115
6.1.2 Nonlinear coupling 121
6.1.3 Numerical examples 124
6.2 Discrete-time multi-agent consensus 127
6.2.1 Distributed event-based bipartite consensus 127
6.2.2 Self-triggered approach 140
6.2.3 Numerical example 143
6.3 Summary 146
References 146
Chapter 7 Finite-Time and Fixed-Time Bipartite Consensus for Multi-Agent Systems with Antagonistic Interactions 148
7.1 Preliminaries 150
7.2 Finite-time bipartite consensus 151
7.2.1 Finite-time bipartite consensus protocol 151
7.2.2 Pinning bipartite consensus protocol 156
7.2.3 Numerical examples 159
7.3 Fixed-time bipartite consensus 163
7.3.1 General fixed-time bipartite consensus 165
7.3.2 Signed-average fixed-time bipartite consensus 168
7.3.3 Numerical examples 171
7.4 Summary 173
References 174
Chapter 8 Globally Exponential Synchronization and Synchronizability for General Dynamical Networks 178
8.1 Preliminaries 179
8.2 Synchronization analysis 181
8.2.1 Irreducible case 181
8.2.2 Reducible case 189
8.3 Numerical examples 193
8.4 Summary 200
References 200
Chapter 9 Pinning Cluster Synchronization in an Arrayof Coupled Neural Networks under Event-Based Mechanism 203
9.1 Preliminaries and problem formulation 204
9.2 Pinning cluster synchronization under event-triggered mechanism 207
9.3 Pinning cluster synchronization under self-triggered mechanism 214
9.4 Numerical example 217
9.5 Summary 222
References 222
Chapter 10 Multi-Agent Consensus Recovery Approach under Node Failure 225
10.1 Preliminaries 225
10.2 Consensus analysis of general multi-agent networks 227
10.3 Consensus recovery approach 232
10.4 Numerical examples 239
10.5 Summary 244
References 244
Chapter 11 Conclusion and FutureWork 246
11.1 Conclusion 246
11.2 Future work 247
Color Illustrations
展開全部

通信約束下復雜網絡化系統的群體行為(英文版) 節選

Chapter 1 Introduction 1.1 Background With the rapid development of modern technology, the world has entered the age of networks. Typical examples of networks include the World Wide Web, routes of airlines, biological networks, human relationships, and so on [1]. As a special kind of network, complex networked systems consisting of large groups of cooperating agents have made a significant impact on a broad range of applications including cooperative control of autonomous underwater vehicles (AUVs) [2],scheduling of automated highway systems [3],and congestion control in communication networks [4]. The study of complex networks can be traced back to Euler’s celebrated solution of the Konigsberg bridge problem in 1735,which is often regarded as the first true proof in the theory of networks. In the later 1950s, a random-graph model was proposed by Paul Erdos and Alfred Renyi [5], which laid a solid foundation for modern network theory. Watts and Strogatz proposed a model of small-world networks in 1998 [6]; after that, Barabasi and Albert proposed a model of scale-free networks in 1999 based on the preferential attachment [7]. These two works reveal small-world effect and scale-free property of complex networks and the reasons for the above phenomena. Over the past two decades, complex dynamical networks have been widely exploited by researchers in various fields of physics [8],mathematics [9], engineering [10,11],biology [12],and sociology [13]. What makes complex networked systems distinct from other kinds of systems is that they make it possible to deploy a large number of subsystems as a team to cooperatively carry out a prescribed task. Furthermore, the most striking feature that can be observed in complex networked systems is their ability to show collective behavior that cannot be well explained in terms of the individual dynamics of each single node. Two significant kinds of cooperative behaviors are synchronization and consensus [9,14-18],both of which mean that all agents reach an agreement on certain quantities of interest. The formal study of consensus dates back to 1974 [19], where a mathematical model was presented to describe how the group reaches an agreement. Another interesting discovery is the collective behavior of a group of birds exhibited in foraging or flight, which is found by biologists in the observation of birds’ flocking [20]. If attention is paid, one can find that consensus is a universal phenomenon in nature, such as the shoaling behavior of fish [21], the synchronous flashing of fireflies [22], the swarming behavior of insects [20,23, 24], and the herd behavior of land animals [25]. The key feature of consensus is how local communications and cooperations among agents,i.e., consensus protocols (or consensus algorithms), can lead to certain desirable global behavior [26-29]. Various models have been proposed to study the mechanism of multi-agent consensus problem [30-37]. In [38], the consensus problem was considered of a switched multi-agent system composed of continuous-time and discrete-time subsystems. The authors in [39] investigated consensus problems of a class of second-order continuous-time multi-agent systems with time-delay and jointly-connected topologies. Literature [40] focused on the mean square practical leader-following consensus of second-order nonlinear multiagent systems with noises and unmodeled dynamics. Synchronization, as typical collective behavior and basic motion in nature, means that the difference among the states of any two different subsystems goes to zero as time goes to infinity or time goes to a certain fixed value. Synchronization phenomena exist widely and can be found in different forms in nature and man-made systems, such as fireflies, synchronous flashing, attitude alignment, and the synchronized applause of audiences. To reveal the mechanism of synchronization of complex dynamical networks, a vast volume of work has been done over the past few years. Before the appearance of small-world [6] and scale-free [7] network models, Wu and Chua in [41,42] investigated synchronization of an array of linearly coupled systems and gave some effective synchronization criteria. In 1998, Pecora and Carroll [43] proposed the concept of master stability function as synchronization criterion, which revealed that synchronization highly depends on the coupling strategy or the topology of the network. In [14, 44-46], synchronization in small-world and scale-free networks were studied in detail. Over the past few years, different kinds of synchronization have been found and studied, such as complete synchronization [14,41,42,47,48], cluster synchronization [49-52], phase synchronization [53], lag synchronization [54,55] and generalized synchronization [56]. In the literature, most works on the consensus/synchronization of complex networks mainly focus on the analysis of network models with perfect communication, in which it

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 螺旋叶片_螺旋叶片成型机_绞龙叶片_莱州源泽机械制造有限公司 | 超声波成孔成槽质量检测仪-压浆机-桥梁预应力智能张拉设备-上海硕冠检测设备有限公司 | 最新电影-好看的电视剧大全-朝夕电影网 | 捷码低代码平台 - 3D数字孪生_大数据可视化开发平台「免费体验」 | 定制/定做衬衫厂家/公司-衬衫订做/订制价格/费用-北京圣达信 | 礼仪庆典公司,礼仪策划公司,庆典公司,演出公司,演艺公司,年会酒会,生日寿宴,动工仪式,开工仪式,奠基典礼,商务会议,竣工落成,乔迁揭牌,签约启动-东莞市开门红文化传媒有限公司 | 盛源真空泵|空压机-浙江盛源空压机制造有限公司-【盛源官网】 | 乐考网-银行从业_基金从业资格考试_初级/中级会计报名时间_中级经济师 | 橡胶电子拉力机-塑料-微电脑电子拉力试验机厂家-江苏天源 | 世界箱包品牌十大排名,女包小众轻奢品牌推荐200元左右,男包十大奢侈品牌排行榜双肩,学生拉杆箱什么品牌好质量好 - Gouwu3.com | 山东柳店新能源科技有限公司| 杭州货架订做_组合货架公司_货位式货架_贯通式_重型仓储_工厂货架_货架销售厂家_杭州永诚货架有限公司 | 不锈钢轴流风机,不锈钢电机-许昌光维防爆电机有限公司(原许昌光维特种电机技术有限公司) | 广州展览设计公司_展台设计搭建_展位设计装修公司-众派展览装饰 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 量子管通环-自清洗过滤器-全自动反冲洗过滤器-沼河浸过滤器 | 润滑油加盟_润滑油厂家_润滑油品牌-深圳市沃丹润滑科技有限公司 琉璃瓦-琉璃瓦厂家-安徽盛阳新型建材科技有限公司 | 珠宝展柜-玻璃精品展柜-首饰珠宝展示柜定制-鸿钛展柜厂家 | 事迹材料_个人事迹名人励志故事| 石磨面粉机|石磨面粉机械|石磨面粉机组|石磨面粉成套设备-河南成立粮油机械有限公司 | 微信小程序定制,广州app公众号商城网站开发公司-广东锋火 | 上海赞永| 钢格板_钢格栅_格栅板_钢格栅板 - 安平县鑫拓钢格栅板厂家 | 英超直播_英超免费在线高清直播_英超视频在线观看无插件-24直播网 | 高铝轻质保温砖_刚玉莫来石砖厂家_轻质耐火砖价格 | 智能楼宇-楼宇自控系统-楼宇智能化-楼宇自动化-三水智能化 | 首页|光催化反应器_平行反应仪_光化学反应仪-北京普林塞斯科技有限公司 | 耐热钢-耐磨钢-山东聚金合金钢铸造有限公司 | 土壤墒情监测站_土壤墒情监测仪_土壤墒情监测系统_管式土壤墒情站-山东风途物联网 | 桐城新闻网—桐城市融媒体中心主办| 袋式过滤器,自清洗过滤器,保安过滤器,篮式过滤器,气体过滤器,全自动过滤器,反冲洗过滤器,管道过滤器,无锡驰业环保科技有限公司 | 国标白水泥,高标号白水泥,白水泥厂家-淄博华雪建材有限公司 | 西安耀程造价培训机构_工程预算实训_广联达实作实操培训 | 中原网视台| 镀锌角钢_槽钢_扁钢_圆钢_方矩管厂家_镀锌花纹板-海邦钢铁(天津)有限公司 | 伸缩器_伸缩接头_传力接头-巩义市润达管道设备制造有限公司 | 成都热收缩包装机_袖口式膜包机_高速塑封机价格_全自动封切机器_大型套膜机厂家 | 点焊机-缝焊机-闪光对焊机-电阻焊设备生产厂家-上海骏腾发智能设备有限公司 | 铝合金电阻-无源谐波滤波器-上海稳达电讯设备厂 | 天津市能谱科技有限公司-专业的红外光谱仪_红外测油仪_紫外测油仪_红外制样附件_傅里叶红外光谱技术生产服务厂商 | 新疆系统集成_新疆系统集成公司_系统集成项目-新疆利成科技 | 武汉刮刮奖_刮刮卡印刷厂_为企业提供门票印刷_武汉合格证印刷_现金劵代金券印刷制作 - 武汉泽雅印刷有限公司 |