掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
抽象代數基礎 版權信息
- ISBN:9787030679581
- 條形碼:9787030679581 ; 978-7-03-067958-1
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
抽象代數基礎 內容簡介
《Introduction to Abstract Algebra》(抽象代數基礎)不僅在數學中占有及其重要的地位,而且在其它學科中也有廣泛的應用,如理論物理、計算機學科等。其研究的方法和觀點,對其他學科產生了越來越大的影響。《抽象代數基礎(英)》采取全英文形式撰寫,主要介紹群、環、域的基本理論。通過《抽象代數》的學習,讓學生理解和掌握群、環、域三個代數系統的基礎知識和基本理論,受到代數方法的初步訓練,對抽象代數的思想和方法有初步認識,抽象思維能力和邏輯推理能力得到一定提高。從而為進一步學習數學專業其他課程打下必要的基礎。
抽象代數基礎 目錄
Contents
Chapter l Groups and Generating Sets 1
1.1 Binary operations 1
1.2 Isomorphic binary structures 6
Chapter 2 Permutation Groups and Alternating Groups 31
2.1 Permutation groups 31
2.2 Alternating groups 38
Chapter 3 Finitely Generated Abelian Groups and Quotient Groups 45
3.1 The theorem of Lagrange 45
3.2 Finitely generated abelian groups 48
3.3 Properties of homomorphisms 57
3.4 Quotient groups and isomorphism theorems 60
3.5 Automorphism groups 67
Chapter 4 Rings, Quotient Rings and Ideal Theory 78
4.1 Basic definitions 78
4.2 Integral domains 84
4.3 Noncommutative rings 88
4.4 Quatcrnions 95
4.5 Isomorphism thcorcms 101
4.6 Euler’s theorem 107
4.7 Ideal theory 109
Chapter 5 Unique Factorization Domains 119
5.1 Basic definitions 119
5.2 Principal ideal domains 122
5.4 Polynomial rings over UFDs 129
Chapter 6 Extension Fields 141
6.1 Prime fields and extension fields 141
6.2 Algebraic and transcendental elements 145
6.3 Algebraic extensions and algebraic closure 152
6.4 Finite fields 157
Appendix A Equivalence Relations and Quotient Set 165
Appendix B Zorn’s Lemma 167
Appendix C Quotient field 169
Chapter l Groups and Generating Sets 1
1.1 Binary operations 1
1.2 Isomorphic binary structures 6
Chapter 2 Permutation Groups and Alternating Groups 31
2.1 Permutation groups 31
2.2 Alternating groups 38
Chapter 3 Finitely Generated Abelian Groups and Quotient Groups 45
3.1 The theorem of Lagrange 45
3.2 Finitely generated abelian groups 48
3.3 Properties of homomorphisms 57
3.4 Quotient groups and isomorphism theorems 60
3.5 Automorphism groups 67
Chapter 4 Rings, Quotient Rings and Ideal Theory 78
4.1 Basic definitions 78
4.2 Integral domains 84
4.3 Noncommutative rings 88
4.4 Quatcrnions 95
4.5 Isomorphism thcorcms 101
4.6 Euler’s theorem 107
4.7 Ideal theory 109
Chapter 5 Unique Factorization Domains 119
5.1 Basic definitions 119
5.2 Principal ideal domains 122
5.4 Polynomial rings over UFDs 129
Chapter 6 Extension Fields 141
6.1 Prime fields and extension fields 141
6.2 Algebraic and transcendental elements 145
6.3 Algebraic extensions and algebraic closure 152
6.4 Finite fields 157
Appendix A Equivalence Relations and Quotient Set 165
Appendix B Zorn’s Lemma 167
Appendix C Quotient field 169
展開全部
書友推薦
- >
伯納黛特,你要去哪(2021新版)
- >
苦雨齋序跋文-周作人自編集
- >
中國人在烏蘇里邊疆區:歷史與人類學概述
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術叢書(紅燭學術叢書)
- >
自卑與超越
- >
朝聞道
- >
月亮與六便士
- >
煙與鏡
本類暢銷
-
代數學引論-(第二卷)(第3版)
¥36.3¥44.1