掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
經典力學 質點細和哈密頓頓力學 第二版(影印版) 版權信息
- ISBN:9787519255329
- 條形碼:9787519255329 ; 978-7-5192-5532-9
- 裝幀:暫無
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
經典力學 質點細和哈密頓頓力學 第二版(影印版) 內容簡介
德國著名理論物理學家W.Griner等教授撰寫的13卷集“理論物理學教科書”,是一套內容完整實用面向大學生和碩士研究生的現代物理學教材。它以系統的、統一的、連貫的方式闡述了現代理論物理學的各個方面。本套教材的特點:①取材新穎。作者十分重視新實驗數據對理論物理學概念發展和深化的重要作用,不斷引人大量新的材料擴充其內容。②內容敘述簡明、清晰、易懂,數學推導詳盡。③每卷中都輸入了數以百計的例題和習題,并均給出了詳細的解答。這在當前理物理學的大量出版物中是極為難得的,它能幫助和輔導學生把理論物理學的概念與方法應用于解決物理學家感興趣的實驗問題。④書中每章后附有與本章內容有關的科學家傳略。內容包括5部分:移動坐標系中的牛頓力學;質點系力學;振動系統;剛體力學;拉格朗日方程;哈密頓理論;非線性動力學。
經典力學 質點細和哈密頓頓力學 第二版(影印版) 目錄
Part I Newtonian Mechanics in Moving Coordinate Systems
1 Newton's Equations in a Rotating Coordinate System
1.1 Introduction of the Operator D
1.2 Formulation of Newton's Equation in the Rotating Coordinate System
1.3 Newton's Equations in Systems with Arbitrary Relative Motion
2 Free Fall on the Rotating Earth
2.1 Perturbation Calculation
2.2 Method of Successive Approximation
2.3 Exact Solution
3 Foucault's Pendulum
3.1 Solution of the Differential Equations
3.2 Discussion of the Solution
Part II Mechanics of Particle Systems
4 Degrees of Freedom
4.1 Degrees of Freedom of a Rigid Body
5 Center of Gravity
6 Mechanical Fundamental Quantities of Systems of Mass Points
6.1 Linear Momentum of the Many-Body System
6.2 Angular Momentum of the Many-Body System
6.3 Energy Law of the Many-Body System
6.4 Transformation to Center-of-Mass Coordinates
6.5 Transformation of the Kinetic Energy
Part III Vibrating Systems
7 Vibrations of Coupled Mass Points
7.1 The Vibrating Chain
8 The Vibrating String
8.1 Solution of the Wave Equation
8.2 Normal Vibrations
9 Fourier Series
10 The Vibrating Membrane
10.1 Derivation of the Differential Equation
10.2 Solution of the Differential Equation
10.3 Inclusion of the Boundary Conditions
10.4 Eigenfrequencies
10.5 Degeneracy
10.6 Nodal Lines
10.7 General Solution
10.8 Superposition of Node Line Figures
10.9 The Circular Membrane
10.10 Solution of Bessel's Differential Equation
Part IV Mechanics of Rigid Bodies
11 Rotation About a Fixed Axis
11.1 Moment of Inertia
11.2 The Physical Pendulum
12 Rotation About a Point
12.1 Tensor of Inertia
12.2 Kinetic Energy of a Rotating Rigid Body
12.3 The Principal Axes of Inertia
12.4 Existence and Orthogonality of the Principal Axes
12.5 Transformation of the Tensor of Inertia
12.6 Tensor of Inertia in the System of Principal Axes
12.7 Ellipsoid of Inertia
13 Theory of the Top
13.1 The Free Top
13.2 Geometrical Theory of the Top
13.3 Analytical Theory of the Free Top
13.4 The Heavy Symmetric Top: Elementary Considerations
13.5 Further Applications of the Top
13.6 The Euler Angles
13.7 Motion of the Heavy Symmetric Top
Part V Lagrange Equations
14 Generalized Coordinates
14.1 Quantities of Mechanics in Generalized Coordinates
15 D'Alembert Principle and Derivation of the Lagrange Equations
15.1 Virtual Displacements
16 Lagrange Equation for Nonholonomic Constraints
17 Special Problems
17.1 Velocity-Dependent Potentials
17.2 Nonconservative Forces and Dissipation Function (Friction Function:
17.3 Nonholonomic Systems and Lagrange Multipliers
Part VI Hamiltonian Theory
18 Hamilton's Equations
18.1 The Hamilton Principle
18.2 General Discussion of Variational Principles
18.3 Phase Space and Liouville's Theorem
18.4 The Principle of Stochastic Cooling
19 Canonical Transformations
20 Hamilton-Jacobi Theory
20.1 Visual Interpretation of the Action Function S
20.2 Transition to Quantum Mechanics
21 Extended Hamilton-Lagrange Formalism
21.1 Extended Set of Euler-Lagrange Equations
21.2 Extended Set of Canonical Equations
21.3 Extended Canonical Transformations
22 Extended Hamilton-Jacobi Equation
Part VII Nonlinear Dynamics
23 Dynamical Systems
23.1 Dissipative Systems: Contraction of the Phase-Space Volume . . .
23.2 Attractors
23.3 Equilibrium Solutions
23.4 Limit Cycles
24 Stability of Time-Dependent Paths
24.1 Periodic Solutions
24.2 Discretization and Poincar6 Cuts
25 Bifurcations
25.1 Static Bifurcations
25.2 Bifurcations of Time-Dependent Solutions
26 Lyapunov Exponents and Chaos
26.1 One-Dimensional Systems
26.2 Multidimensional Systems
26.3 Stretching and Folding in Phase Space
26.4 Fractal Geometry
27 Systems with Chaotic Dynamics
27.1 Dynamics of Discrete Systems
27.2 One-Dimensional Mappings
Part VIII On the History of Mechanics
28 Emergence of Occidental Physics in the Seventeenth Century Notes
Recommendations for Further Reading on Theoretical Mechanics
Index
1 Newton's Equations in a Rotating Coordinate System
1.1 Introduction of the Operator D
1.2 Formulation of Newton's Equation in the Rotating Coordinate System
1.3 Newton's Equations in Systems with Arbitrary Relative Motion
2 Free Fall on the Rotating Earth
2.1 Perturbation Calculation
2.2 Method of Successive Approximation
2.3 Exact Solution
3 Foucault's Pendulum
3.1 Solution of the Differential Equations
3.2 Discussion of the Solution
Part II Mechanics of Particle Systems
4 Degrees of Freedom
4.1 Degrees of Freedom of a Rigid Body
5 Center of Gravity
6 Mechanical Fundamental Quantities of Systems of Mass Points
6.1 Linear Momentum of the Many-Body System
6.2 Angular Momentum of the Many-Body System
6.3 Energy Law of the Many-Body System
6.4 Transformation to Center-of-Mass Coordinates
6.5 Transformation of the Kinetic Energy
Part III Vibrating Systems
7 Vibrations of Coupled Mass Points
7.1 The Vibrating Chain
8 The Vibrating String
8.1 Solution of the Wave Equation
8.2 Normal Vibrations
9 Fourier Series
10 The Vibrating Membrane
10.1 Derivation of the Differential Equation
10.2 Solution of the Differential Equation
10.3 Inclusion of the Boundary Conditions
10.4 Eigenfrequencies
10.5 Degeneracy
10.6 Nodal Lines
10.7 General Solution
10.8 Superposition of Node Line Figures
10.9 The Circular Membrane
10.10 Solution of Bessel's Differential Equation
Part IV Mechanics of Rigid Bodies
11 Rotation About a Fixed Axis
11.1 Moment of Inertia
11.2 The Physical Pendulum
12 Rotation About a Point
12.1 Tensor of Inertia
12.2 Kinetic Energy of a Rotating Rigid Body
12.3 The Principal Axes of Inertia
12.4 Existence and Orthogonality of the Principal Axes
12.5 Transformation of the Tensor of Inertia
12.6 Tensor of Inertia in the System of Principal Axes
12.7 Ellipsoid of Inertia
13 Theory of the Top
13.1 The Free Top
13.2 Geometrical Theory of the Top
13.3 Analytical Theory of the Free Top
13.4 The Heavy Symmetric Top: Elementary Considerations
13.5 Further Applications of the Top
13.6 The Euler Angles
13.7 Motion of the Heavy Symmetric Top
Part V Lagrange Equations
14 Generalized Coordinates
14.1 Quantities of Mechanics in Generalized Coordinates
15 D'Alembert Principle and Derivation of the Lagrange Equations
15.1 Virtual Displacements
16 Lagrange Equation for Nonholonomic Constraints
17 Special Problems
17.1 Velocity-Dependent Potentials
17.2 Nonconservative Forces and Dissipation Function (Friction Function:
17.3 Nonholonomic Systems and Lagrange Multipliers
Part VI Hamiltonian Theory
18 Hamilton's Equations
18.1 The Hamilton Principle
18.2 General Discussion of Variational Principles
18.3 Phase Space and Liouville's Theorem
18.4 The Principle of Stochastic Cooling
19 Canonical Transformations
20 Hamilton-Jacobi Theory
20.1 Visual Interpretation of the Action Function S
20.2 Transition to Quantum Mechanics
21 Extended Hamilton-Lagrange Formalism
21.1 Extended Set of Euler-Lagrange Equations
21.2 Extended Set of Canonical Equations
21.3 Extended Canonical Transformations
22 Extended Hamilton-Jacobi Equation
Part VII Nonlinear Dynamics
23 Dynamical Systems
23.1 Dissipative Systems: Contraction of the Phase-Space Volume . . .
23.2 Attractors
23.3 Equilibrium Solutions
23.4 Limit Cycles
24 Stability of Time-Dependent Paths
24.1 Periodic Solutions
24.2 Discretization and Poincar6 Cuts
25 Bifurcations
25.1 Static Bifurcations
25.2 Bifurcations of Time-Dependent Solutions
26 Lyapunov Exponents and Chaos
26.1 One-Dimensional Systems
26.2 Multidimensional Systems
26.3 Stretching and Folding in Phase Space
26.4 Fractal Geometry
27 Systems with Chaotic Dynamics
27.1 Dynamics of Discrete Systems
27.2 One-Dimensional Mappings
Part VIII On the History of Mechanics
28 Emergence of Occidental Physics in the Seventeenth Century Notes
Recommendations for Further Reading on Theoretical Mechanics
Index
展開全部
經典力學 質點細和哈密頓頓力學 第二版(影印版) 作者簡介
本書作者W. Griner是德國理論物理學家,著有13卷集的“理論物理學教程”,這套書也讓作者享譽全世界,成為全球眾多高校物理學高年級本科生和研究生的教材和標準參考用書。
書友推薦
- >
詩經-先民的歌唱
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術叢書(紅燭學術叢書)
- >
伊索寓言-世界文學名著典藏-全譯本
- >
伯納黛特,你要去哪(2021新版)
- >
史學評論
- >
煙與鏡
- >
月亮虎
- >
大紅狗在馬戲團-大紅狗克里弗-助人
本類暢銷