中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
新時代·技術新未來自動機器學習(AutoML):方法、系統與挑戰

包郵 新時代·技術新未來自動機器學習(AutoML):方法、系統與挑戰

出版社:清華大學出版社出版時間:2020-11-01
開本: 其他 頁數: 256
中 圖 價:¥44.6(5.0折) 定價  ¥89.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

新時代·技術新未來自動機器學習(AutoML):方法、系統與挑戰 版權信息

  • ISBN:9787302552550
  • 條形碼:9787302552550 ; 978-7-302-55255-0
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

新時代·技術新未來自動機器學習(AutoML):方法、系統與挑戰 本書特色

中國人工智能學會機器學習專業委員會主任 陳松燦 中國計算機學會大數據專家委員會副主任 陳恩紅 好未來集團副總裁兼開放平臺事業部總裁 黃琰 澳大利亞科學院院士, 悉尼大學教授 陶大程 劍橋大學教授、谷歌AI 大腦團隊負責人 卓賓??加拉馬尼 聯袂推薦

新時代·技術新未來自動機器學習(AutoML):方法、系統與挑戰 內容簡介

本書全面介紹自動機器學習,主要包含自動機器學習的方法、實際可用的自動機器學習系統及目前所面臨的挑戰。在自動機器學習方法中,本書涵蓋超參優化、元學習、神經網絡架構搜索三個部分,每一部分都包括詳細的內容介紹、原理解讀、具體運用方法和存在的問題等。此外,本書還具體介紹了現有的各種可用的AutoML系統,如Auto-sklearn、Auto-WEKA及Auto-Net等,并且本書很后一章詳細介紹了具有代表性的AutoML挑戰賽及挑戰賽結果背后所蘊含的理念,有助于從業者設計出自己的AutoML系統。 本書英文版是靠前上本介紹自動機器學習的英文書,內容全面且翔實,尤為重要的是涵蓋了近期新的AutoML領域進展和難點。本書作者和譯者學術背景扎實,保證了本書的內容質量。 對于初步研究者,本書可以作為其研究自動機器學習方法的背景知識和起點;對于工業界從業人員,本書全面介紹了AutoML系統及其實際應用要點;對于已經從事自動機器學習的研究者,本書可以提供一個AutoML近期新研究成果和進展的概覽。總體來說,本書受眾較為廣泛,既可以作為入門書,也可以作為專業人士的參考書。

新時代·技術新未來自動機器學習(AutoML):方法、系統與挑戰 目錄

目 錄


自動機器學習方法


第1章 超參優化 ··································2


1.1 引言 ··············································2


1.2 問題定義 ·······································4


1.2.1 優化替代方案:集成與邊緣化 ·············5


1.2.2 多目標優化 ···········································5


1.3 黑盒超參優化 ·······························6


1.3.1 免模型的黑盒優化方法 ························6


1.3.2 貝葉斯優化 ···········································8


1.4 多保真度優化 ······························13


1.4.1 基于學習曲線預測的早停法 ··············14


1.4.2 基于Bandit的選擇方法 ·····················15


1.4.3 保真度的適應性選擇 ··························17


1.5 AutoML的相關應用 ····················18


1.6 探討與展望 ··································20


1.6.1 基準測試和基線模型 ··························21


1.6.2 基于梯度的優化 ··································22


1.6.3 可擴展性 ·············································22


1.6.4 過擬合和泛化性 ··································23


1.6.5 任意尺度的管道構建 ··························24


參考文獻···············································25


第2章 元學習 ···································36


2.1 引言 ·············································36


2.2 模型評估中學習 ··························37


2.2.1 獨立于任務的推薦 ······························38


2.2.2 配置空間的設計 ··································39


2.2.3 配置遷移 ·············································39


2.2.4 學習曲線 ·············································42


2.3 任務特性中學習 ··························43


2.3.1 元特征 ·················································43


2.3.2 元特征的學習 ·····································44


2.3.3 基于相似任務熱啟動優化過程 ···········46


2.3.4 元模型 ·················································48


2.3.5 管道合成 ·············································49


2.3.6 調優與否 ·············································50


2.4 先前模型中學習 ··························50


**篇



XVI


2.4.1 遷移學習 ·············································51


2.4.2 針對神經網絡的元學習 ······················51


2.4.3 小樣本學習 ·········································52


2.4.4 不止于監督學習 ··································54


2.5 總結 ·············································55


參考文獻···············································56


第3章 神經網絡架構搜索 ··················68


3.1 引言 ·············································68


3.2 搜索空間 ······································69


3.3 搜索策略 ······································73


3.4 性能評估策略 ······························76


3.5 未來方向 ······································78


參考文獻···············································80


自動機器學習系統


第4章 Auto-WEKA ···························86


4.1 引言 ·············································86


4.2 準備工作 ······································88


4.2.1 模型選擇 ·············································88


4.2.2 超參優化 ·············································88


4.3 算法選擇與超參優化結合

(CASH) ···································89


4.4 Auto-WEKA ·································91


4.5 實驗評估 ······································93


4.5.1 對比方法 ·············································94


4.5.2 交叉驗證性能 ·····································96


4.5.3 測試性能 ·············································96


4.6 總結 ·············································98


參考文獻···············································98


第5章 Hyperopt-sklearn ·················101


5.1 引言 ···········································101


5.2 Hyperopt背景 ····························102


5.3 Scikit-Learn模型選擇 ···············103


5.4 使用示例 ····································105


5.5 實驗 ···········································109


5.6 討論與展望 ································111


5.7 總結 ···········································114


參考文獻·············································114


第6章 Auto-sklearn ························116


6.1 引言 ···········································116


6.2 CASH問題 ································118


6.3 改進 ···········································119


6.3.1 元學習步驟 ········································119


6.3.2 集成的自動構建 ································121


6.4 Auto-sklearn系統 ······················121


6.5 Auto-sklearn的對比試驗 ···········125


6.6 Auto-sklearn改進項的評估 ·······127


6.7 Auto-sklearn組件的詳細分析 ···129


6.8 討論與總結 ································134


6.8.1 討論 ···················································134


第二篇



XVII


6.8.2 使用示例 ···········································134


6.8.3 Auto-sklearn的擴展 ··························135


6.8.4 總結與展望 ·······································136


參考文獻·············································136


第7章 Auto-Net ······························140


7.1 引言 ···········································140


7.2 Auto-Net 1.0 ·······························142


7.3 Auto-Net 2.0 ·······························144


7.4 實驗 ···········································151


7.4.1 基線評估 ···········································151


7.4.2 AutoML競賽上的表現 ·····················152


7.4.3 Auto-Net 1.0與Auto-Net 2.0的對比····154


7.5 總結 ···········································155


參考文獻·············································156


第8章 TPOT ··································160


8.1 引言 ···········································160


8.2 方法 ···········································161


8.2.1 機器學習管道算子 ····························161


8.2.2 構建基于樹的管道 ····························162


8.2.3 優化基于樹的管道 ····························163


8.2.4 基準測試數據 ···································163


8.3 實驗結果 ····································164


8.4 總結與展望 ································167


參考文獻·············································168


第9章 自動統計 ······························170


9.1 引言 ···········································170


9.2 自動統計項目的基本結構 ·········172


9.3 應用于時序數據的自動統計 ·····173


9.3.1 核函數上的語法 ································173


9.3.2 搜索和評估過程 ································175


9.3.3 生成自然語言性的描述 ····················175


9.3.4 與人類比較 ·······································177


9.4 其他自動統計系統 ····················178


9.4.1 核心組件 ···········································178


9.4.2 設計挑戰 ···········································179


9.5 總結 ···········································180


參考文獻·············································180


自動機器學習挑戰賽


第10章 自動機器學習挑戰賽分析 ···186


10.1 引言··········································187


10.2 問題形式化和概述 ···················190


10.2.1 問題的范圍 ·····································190


10.2.2 全模型選擇 ·····································191


10.2.3 超參優化 ·········································192


10.2.4 模型搜索策略 ·································193


10.3 數據··········································197


10.4 挑戰賽協議 ······························201


10.4.1 時間預算和計算資源 ······················201


10.4.2 評分標準 ·········································202


10.4.3 挑戰賽2015/2016中的輪次和階段 ····205


第三篇



10.4.4 挑戰賽2018中的階段 ····················206


10.5 結果··········································207


10.5.1 挑戰賽2015/2016上的得分 ···········207


10.5.2 挑戰賽2018上的得分 ····················209


10.5.3 數據集/任務的難度 ·······················210


10.5.4 超參優化 ·········································217


10.5.5 元學習 ·············································217


10.5.6 挑戰賽中使用的方法 ······················219


10.6 討論··········································224


10.7 總結··········································226


參考文獻·············································229





展開全部

新時代·技術新未來自動機器學習(AutoML):方法、系統與挑戰 作者簡介

弗蘭克??亨特,德國弗萊堡大學教授,機器學習實驗室負責人。主要研究統計機器學習、知識表示、自動機器學習及其應用,獲得第一屆(2015/2016)、第二屆(2018/2019)自動機器學習比賽的世界冠軍。 拉斯??特霍夫,美國懷俄明大學助理教授。主要研究深度學習、自動機器學習,致力于構建領先且健壯的機器學習系統,領導Auto-WEKA項目的開發和維護。 華昆??萬赫仁,荷蘭埃因霍溫理工大學助理教授。主要研究機器學習的逐步自動化,創建了共享數據開源平臺OpenML.org,并獲得微軟Azure研究獎和亞馬遜研究獎。 譯者簡介 何明,中國科學技術大學博士,目前為上海交通大學電子科學與技術方向博士后研究人員、好未來教育集團數據中臺人工智能算法研究員。 劉淇,中國科學技術大學計算機學院特任教授,博士生導師,中國計算機學會大數據專家委員會委員,中國人工智能學會機器學習專業委員會委員。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 在线浊度仪_悬浮物污泥浓度计_超声波泥位计_污泥界面仪_泥水界面仪-无锡蓝拓仪表科技有限公司 | 全自动贴标机-套标机-工业热风机-不干胶贴标机-上海厚冉机械 | 12cr1mov无缝钢管切割-15crmog无缝钢管切割-40cr无缝钢管切割-42crmo无缝钢管切割-Q345B无缝钢管切割-45#无缝钢管切割 - 聊城宽达钢管有限公司 | 防水试验机_防水测试设备_防水试验装置_淋雨试验箱-广州岳信试验设备有限公司 | 跨境物流_美国卡派_中大件运输_尾程派送_海外仓一件代发 - 广州环至美供应链平台 | 宠物店加盟_宠物连锁店_开宠物店-【派多格宠物】 | 寮步纸箱厂_东莞纸箱厂 _东莞纸箱加工厂-东莞市寮步恒辉纸制品厂 | 视觉检测设备_自动化检测设备_CCD视觉检测机_外观缺陷检测-瑞智光电 | 应急灯_消防应急灯_应急照明灯_应急灯厂家-大成智慧官网 | 全自动端子机|刺破式端子压接机|全自动双头沾锡机|全自动插胶壳端子机-东莞市傅氏兄弟机械设备有限公司 | 全国国际化学校_国际高中招生_一站式升学择校服务-国际学校网 | 电地暖-电采暖-发热膜-石墨烯电热膜品牌加盟-暖季地暖厂家 | 轴流风机-鼓风机-离心风机-散热风扇-罩极电机,生产厂家-首肯电子 | 石英陶瓷,石英坩埚,二氧化硅陶瓷-淄博百特高新材料有限公司 | 查分易-成绩发送平台官网 | 山东PE给水管厂家,山东双壁波纹管,山东钢带增强波纹管,山东PE穿线管,山东PE农田灌溉管,山东MPP电力保护套管-山东德诺塑业有限公司 | 南昌旅行社_南昌国际旅行社_南昌国旅在线 | 洛阳永磁工业大吊扇研发生产-工厂通风降温解决方案提供商-中实洛阳环境科技有限公司 | 红酒招商加盟-葡萄酒加盟-进口红酒代理-青岛枞木酒业有限公司 | 车充外壳,车载充电器外壳,车载点烟器外壳,点烟器连接头,旅行充充电器外壳,手机充电器外壳,深圳市华科达塑胶五金有限公司 | 无菌实验室规划装修设计-一体化实验室承包-北京洁净净化工程建设施工-北京航天科恩实验室装备工程技术有限公司 | 膜结构_ETFE膜结构_膜结构厂家_膜结构设计-深圳市烨兴智能空间技术有限公司 | 12cr1mov无缝钢管切割-15crmog无缝钢管切割-40cr无缝钢管切割-42crmo无缝钢管切割-Q345B无缝钢管切割-45#无缝钢管切割 - 聊城宽达钢管有限公司 | 百度关键词优化_网站优化_SEO价格 - 云无限好排名 | 磁力抛光机_磁力研磨机_磁力去毛刺机-冠古设备厂家|维修|租赁【官网】 | 锂辉石检测仪器,水泥成分快速分析仪-湘潭宇科分析仪器有限公司 | 福建珂朗雅装饰材料有限公司「官方网站」 | 空调风机,低噪声离心式通风机,不锈钢防爆风机,前倾皮带传动风机,后倾空调风机-山东捷风风机有限公司 | 电池挤压试验机-自行车喷淋-车辆碾压试验装置-深圳德迈盛测控设备有限公司 | 特材真空腔体_哈氏合金/镍基合金/纯镍腔体-无锡国德机械制造有限公司 | 洛阳永磁工业大吊扇研发生产-工厂通风降温解决方案提供商-中实洛阳环境科技有限公司 | sfp光模块,高速万兆光模块工厂-性价比更高的光纤模块制造商-武汉恒泰通 | 精密五金加工厂-CNC数控车床加工_冲压件|蜗杆|螺杆加工「新锦泰」 | 贵州水玻璃_-贵阳花溪闽兴水玻璃厂 | 冲击式破碎机-冲击式制砂机-移动碎石机厂家_青州市富康机械有限公司 | 重庆网站建设,重庆网站设计,重庆网站制作,重庆seo,重庆做网站,重庆seo,重庆公众号运营,重庆小程序开发 | 美国PARKER齿轮泵,美国PARKER柱塞泵,美国PARKER叶片泵,美国PARKER电磁阀,美国PARKER比例阀-上海维特锐实业发展有限公司二部 | 护栏打桩机-打桩机厂家-恒新重工| 加热制冷恒温循环器-加热制冷循环油浴-杭州庚雨仪器有限公司 | 楼梯定制_楼梯设计施工厂家_楼梯扶手安装制作-北京凌步楼梯 | 气体热式流量计-定量控制流量计(空气流量计厂家)-湖北南控仪表科技有限公司 |