中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)
> >
基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版)

包郵 基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版)

出版社:清華大學(xué)出版社出版時(shí)間:2020-08-01
開(kāi)本: 其他 頁(yè)數(shù): 452
中 圖 價(jià):¥111.8(7.5折) 定價(jià)  ¥149.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車(chē) 收藏
開(kāi)年大促, 全場(chǎng)包郵
?新疆、西藏除外
本類(lèi)五星書(shū)更多>

基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版) 版權(quán)信息

  • ISBN:9787302546368
  • 條形碼:9787302546368 ; 978-7-302-54636-8
  • 裝幀:一般膠版紙
  • 冊(cè)數(shù):暫無(wú)
  • 重量:暫無(wú)
  • 所屬分類(lèi):>

基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版) 本書(shū)特色

《基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版)》將很有可能成為國(guó)內(nèi)外**本講述在微米和亞微米尺度基于連續(xù)和離散位錯(cuò)機(jī)制的晶體塑性理論和計(jì)算專著。 2018年書(shū)稿涉及的研究工作獲得教育部自然科學(xué)一等獎(jiǎng)、作者柳占立和崔一南分別獲得2013年和2018年的國(guó)家青年千人計(jì)劃資助。 書(shū)稿獲2019年度國(guó)家科學(xué)技術(shù)學(xué)術(shù)著作出版基金資助。

基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版) 內(nèi)容簡(jiǎn)介

《基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版)》展示了在微米和亞微米尺度基于位錯(cuò)機(jī)制的晶體塑性理論模型和計(jì)算方法,便于理解“越細(xì)越硬”的強(qiáng)度尺寸效應(yīng)。相比普遍認(rèn)知的預(yù)應(yīng)變引起硬化和退火引起軟化,在小尺度材料上展示了相反的結(jié)果,即預(yù)應(yīng)變引起軟化和退火引起硬化。在晶體中觀測(cè)到的反常規(guī)本構(gòu)關(guān)系,例如,屈服強(qiáng)度的尺度依賴性,微柱壓縮過(guò)程中的間隙塑性流動(dòng)。這些新的反常規(guī)的力學(xué)特點(diǎn)改變了人們對(duì)連續(xù)介質(zhì)力學(xué)和塑性流動(dòng)行為的傳統(tǒng)認(rèn)識(shí)。

基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版) 目錄

Chapter I: Background and Significance I.I Framework of This Book 1.2 Polycrystalline and Single-Crystal Plasticity 1.3 Size Effect on Crystal Plasticity at Micron and Submicron Scales 1.3.1 Size Effect Observed in Material Experiments 1.3.2 Size Effect of Yield Stress 1.3.3 Strain Burst and Dislocation Avalanches 1.3.4 Size Effect of Submicron Crystal Under Cyclic Loading 1.3.5 Size Effect of Deformation Morphology of Compressed Micropillars 1.4 Method to Bridge Size Effect 1.4.1 Supersurface From Macro to Micron 1.4.2 Nonlocal Crystal Plasticity 1.4.3 Discrete Dislocation Dynamics Simulation Method 1.5 Content of This Book Part 1 Continuum Dislocation Mechanlsm-Based Crystal Plasticity.. Chapter 2: Fundamental Conventional Concept of Plasticity Constitution 2.1 Introduction 2.2 One-Dimensional Plasticity 2.2.1 Isotropic Hardening 2.2.2 Kinematic Hardening 2.2.3 Rate-Dependent Plasticity 2.3 Multiaxial Plasticity 2.3.1 Hypoelastic-Plastic Materials 2.3.2 Small Strain Plasticity 2.4 J2 Flow Theory Plasticity 2.4.1 Kirchhoff Stress Formulation of Je Flow Theory Plasticity 2.4.2 Extension to Kinematic Hardening 2.4.3 Large Strain Viscoplasticity 2.5 Rock-Soil Constitutive Model 2.5.1 Mohr-Coulomb Constitutive Model 2.5.2 Drucker-Prager Constitutive Model 2.6 Gurson Model for Porous Elastic-Plastic Solids 2.7 Corotational Stress Formulation 2.8 Summary Chapter 3: Strain Gradient Plasticity Theory at the Microscale 3.1 Size Dependence of Material Behavior at the Microscale 3.2 Couple Stress Theory 3.2.1 Couple Stresses 3.2.2 Rotation and Rotation Gradient 3.2.3 Virtual Work Principle 3.2.4 Constitutive Relation of Couple Stress Strain Gradient Plasticity Theory 3.2.5 Principles of Minimum Potential Energy and Minimum Complementary Energy 3.2.6 Equivalent Stress and Equivalent Strain 3.3 Stretch and Rotation Gradient Theory 3.3.1 Strain Gradient Tensor 3.3.2 Decomposition of Strain Gradient Partial Tensor 77t and Total Equivalent Strain Ess 3.3.3 Constitutive Relation of Stretch and Rotation Gradient Strain Gradient Plastic Theory 3.4 Microscale Mechanism-Based Strain Gradient Plasticity Theory 3.4.1 Experimental Law for Strain Gradient Plasticity Theory 3.4.2 Motivation for Microscale Mechanism-Based Strain Gradient Plasticity Theory 3.4.3 Microscale Computation Framework 3.4.4 Dislocation Model 3.4.5 Constitutive Equation of Mechanism-Based Strain Gradient Plasticity Theory 3.4.6 Size of Cell Element at the Microscale 3.4.7 Mechanism-Based Strain Gradient Plasticity Predicts Stress Singularity at Crack Tip 3.5 Summary Chapter 4: Dislocation-Based Single-Crystal Plasticity Model 4.1 Introduction 4.2 General Constitutive Model for Single Crystals 4.2.1 Basic Kinematics of Crystal Plasticity 4.2.2 Slip Rate and Dislocation Density Evolution 4.2.3 Plastic Stress Required for Dislocation Motion 4.2.4 Update of Cauchy Stress in Single-Crystal Plasticity 4.3 Higher-Order Dislocation Dynamics-Based Crystal Plasticity Model 4.3.1 Governing Equations of Macroforces 4.3.2 Governing Equations of Microforces 4.3.3 Coupling of Macroscopic and Microscopic Equations 4.4 Size and Bauschinger Effect in Passivated Thin Films 4.4.1 Two Hardening Mechanisms Caused by Geometrically Necessary Dislocations 4.4.2 Model Description 4.4.3 Size Effect of Passivated Thin Films Under Tension 4.4.4 Bauschinger Effect of Passivated Thin Films During Unloading 4.5 Summary Chapter 5: Revealing the Size Effect in Micropillars by Dislocation-Based Crystal Plasticity Theory 5.1 Introduction 5.2 Strain Burst and Size Effect in Compression Micropillars 5.2.1 Stochastic Crystal Plasticity Model 5.2.2 Determination of Size-Dependent Slip Resistance 5.2.3 Strain Bursts at Small Scales 5.2.4 Application to the Compression of Single-Crystal Ni Micron Pillars 5.3 Size-Dependent Deformation Morphology of Micropillars 5.3.1 Simulation Setups 5.3.2 Size-Dependent Deformation Morphology 5.3.3 Role of Short-Range Back Stress 5.3.4 Critical Transition Size 5.3.5 Discussions of Material Softening 5.4 Summary Chapter 6: Microscale Crystal Plasticity Model Based on Phase Field Theory. 6.1 Introduction 6.2 Theoretical Model 6.2.1 Basic Equations of Crystal Plasticity Theory 6.2.2 Phase Field Description of Plastic Slip 6.2.3 Stored Energy and Dissipated Energy 6.2.4 Principle of Virtual Power 6.2.5 Coupled Balance Equations 6.2.6 Finite Element Discretization 6.3 Computational Demonstrations 6.3.1 Dislocation Near a Free Surface 6.3.2 Dislocation in an Anisotropic Material 6.3.3 Dislocation Near a Bimaterial Interface 6.4 Applications to Heteroepitaxial Structures 6.4.1 Critical Shell Thickness of Core-Shell Nanopillars 6.4.2 Dislocations in Heteroepitaxial Thin Films 6.5 Summary Part 2 Discrete Dislocation Mechanism-Based Crystal Plasticity Chapter 7: Discrete-Continuous Model of Crystal Plasticity at the Submicron Scale 7.1 Discrete Dislocation Dynamics 7.1.1 Dislocation Kinetic Equation 7.1.2 Dislocation Interactions and Topology Update 7.1.3 Dislocation Cross-Slip 7.1.4 Current Three-Dimensional Discrete Dislocation Dynamics Simulations 7.2 Coupling Discrete Dislocation Dynamics With Finite Element Method 7.2.1 Superposition Method 7.2.2 Discrete-Continuous Model 7.3 Improved Discrete-Continuous Model 7.3.1 Efficient Regularization Method 7.3.2 Image Force Calculation 7.3.3 Finite Deformation 7.4 Application to Heteroepitaxial Films 7.4.1 Thermoelastic Calculation to Determine Internal Stress Field 7.4.2 Influence of Substrate Thickness on Dislocation Behavior 7.5 Application to Irradiated Materials 7.6 Summary Chapter 8: Single-Arm Dislocation Source (SAS)-Controlled Submicron Plasticity 8.1 Introduction 8.2 Single-Arm Dislocation Source Mechanisms at Submicron Scales 8.3 Single-Arm Dislocation Source-Controlled Strain Burst and Dislocation Avalanche 8.4 Description of Single-Arm Dislocation Source-Controlled Plasticity 8.4.1 Single-Ann Dislocation Source-Controlled Dislocation Density Evolution 8.4.2 Effective Single-Arm Dislocation Source Length 8.4.3 Single-Arm Dislocation Source-Controlled Flow Stress 8.5 Summary Chapter 9: Confined Plasticity in Micropillars 9.1 Insights into Coated Micropillar Plasticity 9.1.1 Stress-Strain Curves in Coated and Uncoated Pillars 9.1.2 Dislocation Source Mechanism in Coated Micropillars 9.1.3 Back Stress in Coated Micropillars 9.1.4 Evolution of Mobile and Trapped Dislocation 9.2 Implications for Crystal Plasticity Model 9.3 Theoretical Models for Coated Micropillars 9.3.1 Dislocation Density Evolution Model 9.3.2 Prediction of Stress-Strain Curve 9.4 Brief Discussion on Coating Failure Mechanism 9.4.1 High Hoop Stress of Coated Layer 9.4.2 Transmission Effect of Dislocations Across Coating 9.5 Summary Chapter 10: Mechanical Annealing Under Low-Amplitude Cyclic Loading 10.1 Introduction 10.2 Cyclic Behavior of Collective Dislocations 10.3 Cyclic Instability of Dislocation Junction 10.3.1 Glissile Dislocation Junction 10.3.2 Sessile Dislocation Junction 10.4 Cyclic Enhanced Dislocation Annihilation Mechanism 10.5 Dislocation Density Influenced by Cyclic Slip Irreversibility 10.6 Critical Size for Mechanical Annealing 10.7 Summary Chapter 11: Strain Rate Effect on Deformation of Single Crystals at Submicron Scale 11.1 Introduction 11.2 Strain Rate Effect on Flow Stress in Single-Crystal Copper Under Compression Loading 11.2.1 Strain Rate Effect of Submicron Copper Pillars Under Uniaxial Compression 11.2.2 Strain Rate Effect of Dislocation Evolution in Copper Cubes Under Hydrostatic Pressure 11.3 Strain Rate Effect on Dynamic Deformation of Single-Crystal Copper Under Tensile Loading 11.3.1 Resolution of Discrete Dislocation Dynamics 11.3.2 Coupling Dislocation Dynamics Plasticity With Finite Element 11.3.3 Model Description and Simulation Results 11.4 Shock-Induced Deformation and Dislocation Mechanisms in Single-Crystal Copper 11.4.1 Dynamic Mechanical Behavior Corresponding to Dislocation Microstructure 11.4.2 Dynamic Multiscale Discrete Dislocation Plasticity Model 11.4.3 Coarse-Grained Homogeneous Nucleation Model 11.4.4 Shock-Induced Plasticity at the Submicron Scale 11.4.5 Discussion and Conclusion 11.5 Summary Chapter 12: Glide-Climb Coupling Model and Temperature Effect on Microscale Crystal Plasticity 12.1 Introduction 12.2 Coupled-Dislocation Glide-Climb Model-Based Analysis 12.2.1 Development of Vacancy Diffusion-Based Dislocation Climb Model 12.2.2 Incorporating the Dislocation Climb Model Into Three-Dimensional Discrete Dislocation Dynamics 12.2.3 Validation of Dislocation Climb Model 12.2.4 Coupled Glide-Climb Model Based on Three-Dimensional Discrete Dislocation Dynamics 12.3 Study of Helical Dislocations 12.3.1 Formation of Helical Dislocation 12.3.2 Comparison With Theoretical Solution 12.3.3 Influential Factors for Helical Dislocation Configuration 12.4 Discrete-Continuous Method for Coupling Dislocation Glide-Climb 12.4.1 Dislocation Climb Model in Discrete-Continuous Method 12.4.2 Localize Vacancy Concentration Field of Discrete Dislocation Dynamics Segments to Finite Element Method Nodes 12.4.3 Transferring Vacancy Flux From Finite Element Method Back to Discrete Dislocation Dynamics Segments 12.4.4 Coupled Dislocation Glide-Climb Model 12.5 High-Temperature Annealing Hardening 12.5.1 Brief Description of the Experiment 12.5.2 Simulation Procedures 12.5.3 Simulation Results and Analyses 12.5.4 Microstructural Analysis 12.6 Summary Appendix 1: Single-Crystal Material Model and Pole Figures References Index
展開(kāi)全部

基于位錯(cuò)機(jī)制的微米-亞微米尺度晶體塑性理論和計(jì)算(英文版) 作者簡(jiǎn)介

莊茁,清華大學(xué)航天航空學(xué)院教授,先進(jìn)力學(xué)與材料中心主任,國(guó)防973項(xiàng)目首席科學(xué)家。在動(dòng)態(tài)斷裂力學(xué)、非線性有限元和亞微米尺度晶體塑性的理論和計(jì)算等方面做出國(guó)際l先的科學(xué)成果;在飛機(jī)穿蓋彈射救生系統(tǒng)、西氣東輸管線韌性止裂和頁(yè)巖水力壓裂體積改造等國(guó)家重大工程中做出重要的技術(shù)成果。發(fā)表學(xué)術(shù)論文280余篇,含SCI期刊130余篇;出版18部書(shū)。獲得國(guó)j級(jí)和省部級(jí)的科技和教育成果獎(jiǎng)勵(lì)10余項(xiàng)。中國(guó)力學(xué)學(xué)會(huì)常務(wù)理事、計(jì)算力學(xué)專業(yè)委員會(huì)主任委員。國(guó)際計(jì)算力學(xué)學(xué)會(huì)理事。教育部高等學(xué)校力學(xué)類(lèi)專業(yè)教學(xué)指導(dǎo)委員會(huì)副主任委員。

暫無(wú)評(píng)論……
書(shū)友推薦
本類(lèi)暢銷(xiāo)
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: 车充外壳,车载充电器外壳,车载点烟器外壳,点烟器连接头,旅行充充电器外壳,手机充电器外壳,深圳市华科达塑胶五金有限公司 | 蔬菜配送公司|蔬菜配送中心|食材配送|饭堂配送|食堂配送-首宏公司 | IWIS链条代理-ALPS耦合透镜-硅烷预处理剂-上海顶楚电子有限公司 lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 礼仪庆典公司,礼仪策划公司,庆典公司,演出公司,演艺公司,年会酒会,生日寿宴,动工仪式,开工仪式,奠基典礼,商务会议,竣工落成,乔迁揭牌,签约启动-东莞市开门红文化传媒有限公司 | 防爆电机_防爆电机型号_河南省南洋防爆电机有限公司 | 卓能JOINTLEAN端子连接器厂家-专业提供PCB接线端子|轨道式端子|重载连接器|欧式连接器等电气连接产品和服务 | 脱硝喷枪-氨水喷枪-尿素喷枪-河北思凯淋环保科技有限公司 | 密集柜_档案密集柜_智能密集架_密集柜厂家_密集架价格-智英伟业 密集架-密集柜厂家-智能档案密集架-自动选层柜订做-河北风顺金属制品有限公司 | 江苏远邦专注皮带秤,高精度皮带秤,电子皮带秤研发生产 | 深圳货架厂_仓库货架公司_重型仓储货架_线棒货架批发-深圳市诺普泰仓储设备有限公司 | IIS7站长之家-站长工具-爱网站请使用IIS7站长综合查询工具,中国站长【WWW.IIS7.COM】 | 袋式过滤器,自清洗过滤器,保安过滤器,篮式过滤器,气体过滤器,全自动过滤器,反冲洗过滤器,管道过滤器,无锡驰业环保科技有限公司 | 番茄畅听邀请码怎么输入 - Dianw8.com | 压接机|高精度压接机|手动压接机|昆明可耐特科技有限公司[官网] 胶泥瓷砖胶,轻质粉刷石膏,嵌缝石膏厂家,腻子粉批发,永康家德兴,永康市家德兴建材厂 | 档案密集柜_手动密集柜_智能密集柜_内蒙古档案密集柜-盛隆柜业内蒙古密集柜直销中心 | 阴离子_阳离子聚丙烯酰胺厂家_聚合氯化铝价格_水处理絮凝剂_巩义市江源净水材料有限公司 | 工业车间焊接-整体|集中除尘设备-激光|等离子切割机配套除尘-粉尘烟尘净化治理厂家-山东美蓝环保科技有限公司 | 昆明网络公司|云南网络公司|昆明网站建设公司|昆明网页设计|云南网站制作|新媒体运营公司|APP开发|小程序研发|尽在昆明奥远科技有限公司 | 手机存放柜,超市储物柜,电子储物柜,自动寄存柜,行李寄存柜,自动存包柜,条码存包柜-上海天琪实业有限公司 | 铝箔袋,铝箔袋厂家,东莞铝箔袋,防静电铝箔袋,防静电屏蔽袋,防静电真空袋,真空袋-东莞铭晋让您的产品与众不同 | 上海佳武自动化科技有限公司 | 北京发电车出租-发电机租赁公司-柴油发电机厂家 - 北京明旺盛安机电设备有限公司 | 番茄畅听邀请码怎么输入 - Dianw8.com | 炭黑吸油计_测试仪,单颗粒子硬度仪_ASTM标准炭黑自销-上海贺纳斯仪器仪表有限公司(HITEC中国办事处) | 北京遮阳网-防尘盖土网-盖土草坪-迷彩网-防尘网生产厂家-京兴科技 | 氧化铁红厂家-淄博宗昂化工 | 金属检测机_金属分离器_检针验针机_食品药品金属检探测仪器-广东善安科技 | 温州在线网| 防水接头-电缆防水接头-金属-电缆密封接头-不锈钢电缆接头 | 软膜天花_软膜灯箱_首选乐创品牌_一站式天花软膜材料供应商! | 换网器_自动换网器_液压换网器--郑州海科熔体泵有限公司 | 奶茶加盟,奶茶加盟店连锁品牌-甜啦啦官网 | 建筑资质代办-建筑资质转让找上海国信启航 | 龙门加工中心-数控龙门加工中心厂家价格-山东海特数控机床有限公司_龙门加工中心-数控龙门加工中心厂家价格-山东海特数控机床有限公司 | 低浓度恒温恒湿称量系统,强光光照培养箱-上海三腾仪器有限公司 | 散热器厂家_暖气片_米德尔顿散热器| 无菌水质袋-NASCO食品无菌袋-Whirl-Pak无菌采样袋-深圳市慧普德贸易有限公司 | 恒温振荡混匀器-微孔板振荡器厂家-多管涡旋混匀器厂家-合肥艾本森(www.17world.net) | 考试试题_试卷及答案_诗词单词成语 - 优易学 | 污水处理设备-海普欧环保集团有限公司| 无水硫酸铝,硫酸铝厂家-淄博双赢新材料科技有限公司 |