中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
Hadoop大數據開發實戰(慕課版)

包郵 Hadoop大數據開發實戰(慕課版)

出版社:人民郵電出版社出版時間:2020-08-01
開本: 16開 頁數: 268
本類榜單:教材銷量榜
中 圖 價:¥29.7(5.0折) 定價  ¥59.8 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

Hadoop大數據開發實戰(慕課版) 版權信息

Hadoop大數據開發實戰(慕課版) 本書特色

1.全書以實用、就業為導向2.涵蓋從前期設計到*終實施的整個過程的所有知識點3.避免一味講解理論,以實戰帶動講解本教材既可作為高等院校大數據、計算機相關專業的教材,還可作為大數據開發人員的培訓用書或參考書。

Hadoop大數據開發實戰(慕課版) 內容簡介

共分11章,章對大數據及Hadoop進行總體介紹,第2章講解了如何搭建Hadoop集群。第3-5章講解了HDFS分布式文件系統、MapReduce分布式計算框架以及Zookeeper分布式協調服務。第6章講解Hadoop2.0的新特性。第7-10章主要講解了Hadoop生態圈中的相關輔助系統,包括Hive、HBase分布式存儲系統、Flume、Saoop。1章講解了綜合項目:電商精準營銷。

Hadoop大數據開發實戰(慕課版) 目錄

第1章 初識Hadoop 1
1.1 大數據簡介 1
1.1.1 大數據的五大特征 1
1.1.2 大數據的六大發展趨勢 3
1.1.3 大數據在電商行業的應用 4
1.1.4 大數據在交通行業的應用 5
1.1.5 大數據在醫療行業的應用 5
1.2 大數據技術的核心需求 5
1.3 Hadoop簡介 6
1.3.1 什么是Hadoop 6
1.3.2 Hadoop的產生和發展 6
1.3.3 Hadoop的優缺點 7
1.3.4 Hadoop版本介紹 7
1.3.5 Hadoop生態圈的相關組件 7
1.3.6 Hadoop應用介紹 8
1.3.7 國內Hadoop的就業情況分析 9
1.3.8 分布式系統概述 10
1.4 離線數據分析流程介紹 10
1.4.1 項目需求描述 11
1.4.2 數據來源 11
1.4.3 數據處理流程 11
1.4.4 項目*終效果 12
1.5 大數據學習流程 12
1.6 本章小結 13
1.7 習題 14
第2章 搭建Hadoop集群 15
2.1 安裝準備 15
2.1.1 虛擬機安裝 15
2.1.2 虛擬機克隆 21
2.1.3 Linux系統網絡配置 23
2.1.4 SSH服務配置 26
2.2 Linux基本命令 28
2.2.1 系統工作命令 29
2.2.2 磁盤操作命令 30
2.2.3 目錄與文件操作命令 30
2.2.4 權限操作命令 31
2.3 Hadoop集群搭建 32
2.3.1 Hadoop集群部署模式 32
2.3.2 安裝JDK 32
2.3.3 安裝Hadoop 33
2.3.4 Hadoop集群配置 34
2.4 Hadoop 集群測試 37
2.4.1 格式化文件系統 37
2.4.2 啟動和關閉Hadoop進程命令 37
2.4.3 啟動和查看Hadoop進程 38
2.4.4 查看Web界面 38
2.5 使用Hadoop集群 39
2.6 本章小結 40
2.7 習題 40
第3章 HDFS分布式文件系統 41
3.1 HDFS簡介 41
3.1.1 HDFS的概念 41
3.1.2 HDFS數據的存儲和讀取方式 42
3.1.3 HDFS的特點 42
3.2 HDFS存儲架構和數據讀寫流程 43
3.2.1 HDFS的存儲架構 43
3.2.2 HDFS的數據讀寫流程 44
3.3 HDFS的Shell命令 46
3.4 Java程序操作HDFS 47
3.4.1 HDFS Java API概述 47
3.4.2 使用Java API操作HDFS 47
3.5 Hadoop序列化 55
3.5.1 Hadoop序列化簡介 55
3.5.2 常用實現Writable接口的類 56
3.5.3 自定義實現Writable接口的類 58
3.6 Hadoop小文件處理 59
3.6.1 壓縮小文件 59
3.6.2 創建序列文件 60
3.7 通信機制RPC 63
3.7.1 RPC簡介 63
3.7.2 Hadoop的RPC架構 63
3.8 本章小結 64
3.9 習題 64
第4章 MapReduce分布式計算框架 65
4.1 認識MapReduce 65
4.1.1 MapReduce核心思想 65
4.1.2 MapReduce編程模型 65
4.1.3 MapReduce編程案例——WordCount 67
4.2 MapReduce編程組件 72
4.2.1 InputFormat組件 72
4.2.2 OutputFormat組件 73
4.2.3 RecordReader組件和
RecordWriter組件 76
4.2.4 Partitioner組件 76
4.2.5 Combiner組件 78
4.3 MapReduce作業解析 82
4.3.1 MapReduce作業簡介 82
4.3.2 MapReduce作業運行時的資源調度 82
4.3.3 MapReduce作業運行流程 83
4.4 MapReduce工作原理 83
4.4.1 Map任務工作原理 83
4.4.2 Reduce任務工作原理 83
4.5 Shuffle階段 83
4.5.1 Shuffle的概念 83
4.5.2 Map端的Shuffle 84
4.5.3 Reduce端的Shuffle 85
4.6 優化——數據傾斜 85
4.7 MapReduce典型案例——排序 86
4.7.1 部分排序 86
4.7.2 全排序 87
4.8 MapReduce典型案例——倒排索引 91
4.8.1 準備模擬數據 91
4.8.2 輸出數據解析 92
4.8.3 編寫MapReduce程序 92
4.9 MapReduce典型案例——連接 94
4.9.1 準備模擬數據 94
4.9.2 輸出數據解析 94
4.9.3 編寫MapReduce程序 94
4.10 MapReduce典型案例——平均分以及百分比 97
4.10.1 準備模擬數據 97
4.10.2 輸出數據解析 97
4.10.3 編寫MapReduce程序 97
4.11 MapReduce典型案例——過濾敏感詞匯 100
4.11.1 準備模擬數據 100
4.11.2 創建敏感詞庫 101
4.11.3 編寫MapReduce程序 101
4.12 本章小結 103
4.13 習題 103
第5章 ZooKeeper分布式協調服務 105
5.1 認識ZooKeeper 105
5.1.1 ZooKeeper簡介 105
5.1.2 ZooKeeper的設計目的 105
5.1.3 ZooKeeper的系統模型 106
5.1.4 ZooKeeper中的角色 106
5.1.5 ZooKeeper的工作原理 107
5.2 ZooKeeper安裝和常用命令 108
5.2.1 ZooKeeper單機模式 108
5.2.2 ZooKeeper全分布式 109
5.2.3 ZooKeeper服務器常用腳本 111
5.2.4 ZooKeeper客戶端節點和命令 111
5.3 ZooKeeper客戶端編程 113
5.3.1 配置開發環境 113
5.3.2 Java程序操作ZooKeeper客戶端 114
5.4 ZooKeeper典型應用場景 115
5.4.1 數據發布與訂閱 115
5.4.2 命名服務 115
5.4.3 分布式鎖 116
5.5 本章小結 116
5.6 習題 116
第6章 Hadoop 2.0新特性 118
6.1 Hadoop 2.0的改進 118
6.1.1 HDFS存在的問題 118
6.1.2 MapReduce存在的問題 118
6.1.3 HDFS 2.0解決HDFS 1.0中的問題 119
6.2 YARN資源管理框架 119
6.2.1 YARN簡介 119
6.2.2 YARN架構 119
6.2.3 YARN的優勢 120
6.3 Hadoop的HA模式 120
6.3.1 HA模式簡介 120
6.3.2 HDFS的HA模式 121
6.3.3 YARN的HA模式 127
6.3.4 啟動和關閉Hadoop的HA模式 131
6.4 本章小結 132
6.5 習題 132
第7章 Hive 133
7.1 數據倉庫簡介 133
7.1.1 數據倉庫概述 133
7.1.2 數據倉庫的使用 133
7.1.3 數據倉庫的特點 134
7.1.4 主流的數據倉庫 134
7.2 認識Hive 134
7.2.1 Hive簡介 134
7.2.2 Hive架構 135
7.2.3 Hive和關系型數據庫比較 136
7.3 Hive安裝 136
7.4 Hive數據類型 140
7.4.1 Hive基本數據類型 140
7.4.2 Hive復雜數據類型 141
7.5 Hive數據庫操作 142
7.6 Hive表 143
7.6.1 內部表和外部表 143
7.6.2 對表進行分區 149
7.6.3 對表或分區進行桶操作 153
7.7 Hive表的查詢 156
7.7.1 select查詢語句 156
7.7.2 視圖 161
7.7.3 Join 162
7.8 Hive函數 165
7.8.1 Hive內置函數 165
7.8.2 通過JDBC驅動程序使用Hiveserver2服務 167
7.8.3 Hive用戶自定義函數 169
7.9 Hive性能優化 171
7.10 Hive案例分析 173
7.11 本章小結 174
7.12 習題 174
第8章 HBase分布式存儲系統 175
8.1 認識HBase 175
8.1.1 HBase簡介 175
8.1.2 HBase的數據模型 176
8.1.3 HBase架構 176
8.1.4 HBase文件存儲格式 178
8.1.5 HBase存儲流程 179
8.1.6 HBase和HDFS 179
8.2 HBase表設計 179
8.2.1 列簇設計 179
8.2.2 行鍵設計 180
8.3 HBase安裝 180
8.3.1 HBase的單機模式 180
8.3.2 HBase的HA模式 182
8.4 HBase Shell常用操作 184
8.5 HBase編程 190
8.5.1 配置開發環境 190
8.5.2 使用Java API操作HBase 191
8.5.3 使用HBase實現WordCount 193
8.6 HBase過濾器和比較器 195
8.6.1 過濾器 195
8.6.2 比較器 196
8.6.3 編程實例 196
8.7 HBase與Hive結合 201
8.7.1 HBase與Hive結合的原因 201
8.7.2 Hive關聯HBase 201
8.8 HBase性能優化 202
8.9 本章小結 204
8.10 習題 204
第9章 Flume 205
9.1 認識Flume 205
9.1.1 Flume簡介 205
9.1.2 Flume的特點 205
9.2 Flume基本組件 206
9.2.1 Event 206
9.2.2 Agent 206
9.3 Flume安裝 207
9.4 Flume數據流模型 208
9.5 Flume的可靠性保證 210
9.5.1 負載均衡 210
9.5.2 故障轉移 211
9.6 Flume攔截器 212
9.7 采集案例 214
9.7.1 采集目錄到HDFS 214
9.7.2 采集文件到HDFS 215
9.8 本章小結 216
9.9 習題 216
第10章 Sqoop 217
10.1 認識Sqoop 217
10.1.1 Sqoop簡介 217
10.1.2 Sqoop原理 218
10.1.3 Sqoop架構 218
10.2 Sqoop安裝 218
10.3 Sqoop命令 220
10.3.1 Sqoop數據庫連接參數 221
10.3.2 Sqoop export參數 221
10.3.3 Sqoop import參數 221
10.3.4 Sqoop import命令的基本操作 221
10.4 Sqoop數據導入 222
10.4.1 將MySQL的數據導入HDFS 222
10.4.2 將MySQL的數據導入Hive 223
10.4.3 將MySQL的數據導入HBase 226
10.4.4 增量導入 227
10.4.5 按需導入 229
10.5 Sqoop數據導出 230
10.5.1 將HDFS的數據導出到MySQL 230
10.5.2 將Hive的數據導出到MySQL 231
10.5.3 將HBase的數據導出到MySQL 231
10.6 Sqoop job 233
10.7 本章小結 233
10.8 習題 234
第11章 綜合項目——電商精準營銷 235
11.1 項目概述 235
11.1.1 項目背景介紹 235
11.1.2 項目架構設計 235
11.2 項目詳細介紹 237
11.2.1 項目核心關注點 237
11.2.2 重要概念 237
11.2.3 維度 238
11.3 項目模塊分析 239
11.3.1 用戶基本信息分析模塊 239
11.3.2 瀏覽器分析模塊 239
11.3.3 地域分析模塊 239
11.3.4 外鏈分析模塊 239
11.4 數據采集 240
11.4.1 日志采集系統概述 240
11.4.2 JS SDK收集數據 240
11.4.3 Java SDK收集數據 242
11.4.4 使用Flume搭建日志采集系統 243
11.4.5 日志信息說明 244
11.5 數據清洗 245
11.5.1 分析需要清洗的數據 245
11.5.2 解析數據格式轉換 245
11.5.3 利用MapReduce清洗數據 245
11.6 使用數據倉庫進行數據分析 253
11.6.1 事件板塊數據分析 253
11.6.2 訂單板塊數據分析 257
11.6.3 時間板塊數據分析 262
11.7 可視化 264
11.7.1 ECharts簡介 264
11.7.2 ECharts的優點 265
11.7.3 操作流程 265
11.8 本章小結 267
11.9 習題 267
附錄 268
展開全部

Hadoop大數據開發實戰(慕課版) 作者簡介

千鋒教育 1.千鋒教育采用全程面授高品質、高成本培養模式,教學大綱緊跟企業需求,擁有全國一體化就業保障服務,成為學員信賴的IT職業教育品牌。 2.獲得榮譽包括:中關村移動互聯網產業聯盟副理事長單位、中國軟件協會教育培訓委員會認證一級培訓機構、中關村國際孵化軟件協會授權中關村移動互聯網學院、教育部教育管理信息中心指定移動互聯網實訓基地等。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 欧洲MV日韩MV国产_人妻无码一区二区三区免费_少妇被 到高潮喷出白浆av_精品少妇自慰到喷水AV网站 | 欧版反击式破碎机-欧版反击破-矿山石料破碎生产线-青州奥凯诺机械 | 3A别墅漆/3A环保漆_广东美涂士建材股份有限公司【官网】 | 自动配料系统_称重配料控制系统厂家| DAIKIN电磁阀-意大利ATOS电磁阀-上海乾拓贸易有限公司 | 超声波焊接机_超音波熔接机_超声波塑焊机十大品牌_塑料超声波焊接设备厂家 | EDLC超级法拉电容器_LIC锂离子超级电容_超级电容模组_软包单体电容电池_轴向薄膜电力电容器_深圳佳名兴电容有限公司_JMX专注中高端品牌电容生产厂家 | 开锐教育-学历提升-职称评定-职业资格培训-积分入户 | 磷酸肌酸二钠盐,肌酐磷酰氯-沾化欣瑞康生物科技 | 深圳成考网-深圳成人高考报名网 深圳工程师职称评定条件及流程_深圳职称评审_职称评审-职称网 | 蓄电池回收,ups电池后备电源回收,铅酸蓄电池回收,机房电源回收-广州益夫铅酸电池回收公司 | 小程序开发公司_APP开发多少钱_软件开发定制_微信小程序制作_客户销售管理软件-济南小溪畅流网络科技有限公司 | 3d打印服务,3d打印汽车,三维扫描,硅胶复模,手板,快速模具,深圳市精速三维打印科技有限公司 | 污泥烘干机-低温干化机-工业污泥烘干设备厂家-焦作市真节能环保设备科技有限公司 | 电池高低温试验箱-气态冲击箱-双层电池防爆箱|简户百科 | 大型果蔬切片机-水果冬瓜削皮机-洗菜机切菜机-肇庆市凤翔餐饮设备有限公司 | 仿古瓦,仿古金属瓦,铝瓦,铜瓦,铝合金瓦-西安东申景观艺术工程有限公司 | 安平县鑫川金属丝网制品有限公司,防风抑尘网,单峰防风抑尘,不锈钢防风抑尘网,铝板防风抑尘网,镀铝锌防风抑尘网 | 山东钢格板|栅格板生产厂家供应商-日照森亿钢格板有限公司 | 导电银胶_LED封装导电银胶_半导体封装导电胶厂家-上海腾烁 | 马尔表面粗糙度仪-MAHR-T500Hommel-Mitutoyo粗糙度仪-笃挚仪器 | 国标白水泥,高标号白水泥,白水泥厂家-淄博华雪建材有限公司 | 原子吸收设备-国产分光光度计-光谱分光光度计-上海光谱仪器有限公司 | 南京PVC快速门厂家南京快速卷帘门_南京pvc快速门_世界500强企业国内供应商_南京美高门业 | 气胀轴|气涨轴|安全夹头|安全卡盘|伺服纠偏系统厂家-天机传动 | 日本SMC气缸接头-速度控制阀-日本三菱伺服电机-苏州禾力自动化科技有限公司 | 飞行者联盟-飞机模拟机_无人机_低空经济_航空技术交流平台 | 电伴热系统施工_仪表电伴热保温箱厂家_沃安电伴热管缆工业技术(济南)有限公司 | 充气膜专家-气膜馆-PTFE膜结构-ETFE膜结构-商业街膜结构-奥克金鼎 | 合肥升降机-合肥升降货梯-安徽升降平台「厂家直销」-安徽鼎升自动化科技有限公司 | 储能预警-储能消防系统-电池舱自动灭火装置-四川千页科技股份有限公司官网 | 心肺复苏模拟人|医学模型|急救护理模型|医学教学模型上海康人医学仪器设备有限公司 | 鲁尔圆锥接头多功能测试仪-留置针测试仪-上海威夏环保科技有限公司 | 上海三信|ph计|酸度计|电导率仪-艾科仪器 | 标策网-专注公司商业知识服务、助力企业发展 | 手持气象站_便携式气象站_农业气象站_负氧离子监测站-山东万象环境 | 深圳善跑体育产业集团有限公司_塑胶跑道_人造草坪_运动木地板 | 东莞猎头公司_深圳猎头公司_广州猎头公司-广东万诚猎头提供企业中高端人才招聘服务 | 包装机传感器-搅拌站传感器-山东称重传感器厂家-济南泰钦电气 | 国产离子色谱仪,红外分光测油仪,自动烟尘烟气测试仪-青岛埃仑通用科技有限公司 | 一体化预制泵站-一体化提升泵站-一体化泵站厂家-山东康威环保 |