掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
Differential forms in algebraic topology 版權信息
- ISBN:9787506291903
- 條形碼:9787506291903 ; 978-7-5062-9190-3
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
Differential forms in algebraic topology 內容簡介
《代數拓撲中的微分形式》以微分形式為主要手段,簡潔明快地介紹代數拓撲中的許多比較深刻的概念和定理。全書不拘泥于敘述格式,而是強調有關問題的具體背景,從而使讀者開闊思路和加深對概念的理解。本書可供拓撲工作者參考,亦可作代數拓撲課研究生教材。 目次:de Rham理論;Cech-de Rham復形;譜序列和應用;示性類。
Differential forms in algebraic topology 目錄
Introduction
CHAPTER Ⅰ De Rham Theory
§1 The de Rham Complex on Rn
The de Rham complex
Compact supports
§2 The Mayer-Vietoris Sequence
The functor Ω*
The Mayer-Vietoris sequence
The functor Ω*c and the Mayer-Vietoris sequence for compact supports
§3 Orientation and Integration
Orientation and the integral of a diferential form
Stokes'theorem
§4 Poincare Lemmas
The Poincare lemma for de Rham cohomology
The Poincare lemma for compactly supported cohomology
The degree of a proper map
§5 The Mayer-Vietoris Argument
Existence of a good cover
Finite dimensionality of de Rham cohomology
Poincare duality on an orientable manifold
The Kinneth formula and the Leray-Hirsch theorem
The Poincare dual of a closed oriented submanifold
§6 The Thom Isomorphism
Vector bundles and the reduction of structure groups
Operations on vector bundles
Compact cohomology of a vector bundle
Compact vertical cohomology and integration along the fiber
Poincare duality and the Thom class
The global angular form, the Euler clas, and the Thom clas
Relative de Rham theory
§7 The Nonorientable Case
The twisted de Rham complex
Integration of densities, Poincare duality, and the Thom isomorphism
CHAPTER Ⅱ The Cech-de Rham Complex
§8 The Generalized Mayer-Vietoris Principle
Reformulation of the Mayer-Vietoris sequence
Generalization to countably many open sets and applications
§9 More Examples and Applications of the Mayer-Vietoris Principle
Examples: computing the de Rham cohomology from the combinatorics of a good cover
Explicit isomorphisms between the double complex and de Rham and Cech
The tictac-toe proof of the Kinneth formula
§10 Presheaves and Cech Cohomology
Presheaves
Cech cohomology
§11 Sphere Bundles
Orientability
The Euler class of an oriented sphere bundle
The global angular form
Euler number and the isolated singularities of a section
Euler characteristic and the Hopf index theorem
§12 The Thom Isomorphism and Poincare Duality Revisited
The Thom isomorphism
Euler class and the zero locus of a section
A tic-tac-toe lemma
Poincare duality
§13 Monodromy
When is a locally constant presheaf constant?
Examples of monodromy
CHAPTER Ⅲ Spectral Sequences and Applications
§14 The Spectral Sequence of a Filtered Complex
Exact couples
The spectral sequence of a fltered complex
The spectral sequence of a double complex
The spectral sequence of a fiber bundle
Some applications
Product structures
The Gysin sequence
Leray's construction
§15 Cohomology with Integer Coefficients
Singular homology
The cone construction
The Mayer-Vietoris sequence for singular chains
Singular cohomology
The homology spectral sequence
§16 The Path Fibration
The path fibration
The cohomology of the loop space of a sphere
§17 Review of Homotopy Theory
Homotopy groups
The relative homotopy sequence
Some homotopy groups of the spheres
Attaching cells
Digression on Morse theory
The relation between homotopy and homology
π3(S2) and the Hopf invariant
§18 Applications to Homotopy Theory
Eilenberg-MacLane spaces
The telescoping construction
The cohomology of K (Z, 3)
The transgression
Basic tricks of the trade
Postnikov approximation
Computation of π4(S3)
The Whitehead tower
Computation of π5(S3)
§19 Rational Homotopy Theory
Minimal models
Examples of Minimal Models
The main theorem and applications
CHAPTER Ⅳ Characteristic Classes
§20 Chern Classes of a Complex Vector Bundle
The first Chern class of a complex line bundle
The projectivization of a vector bundle
Main properties of the Chern classes
§21 The Splitting Principle and Flag Manifolds
The splitting principle
Proof of the Whitney product formula and the equality of the top Chern class and the Euler class
Computation of some Chern classes
Flag manifolds
§22 Pontrjagin Classes
Conjugate bundles
Realization and complexification
The Pontrjagin classes of a real vector bundle
Application to the embedding of a manifold in a Euclidean space
§23 The Search for the Universal Bundle
The Grassmannian
Digression on the Poincare series of a graded algebra
The classification of vector bundles
The infinite Grassmannian
Concluding remarks
References
List of Notations
Index
展開全部
Differential forms in algebraic topology 作者簡介
Raoul Bott ,美國哈佛大學劍橋分校(Harvard University Cambridge)數學系教授。
書友推薦
- >
詩經-先民的歌唱
- >
我與地壇
- >
【精裝繪本】畫給孩子的中國神話
- >
龍榆生:詞曲概論/大家小書
- >
我從未如此眷戀人間
- >
經典常談
- >
月亮與六便士
- >
小考拉的故事-套裝共3冊
本類暢銷
-
代數學引論-(第二卷)(第3版)
¥36.3¥44.1