中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
Advanced liquid metal cooling for chip, device and system

包郵 Advanced liquid metal cooling for chip, device and system

作者:Liu jing[著]
出版社:上海科學技術出版社出版時間:2020-01-01
開本: 25cm 頁數: 12,660頁
本類榜單:自然科學銷量榜
中 圖 價:¥328.9(5.5折) 定價  ¥598.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

Advanced liquid metal cooling for chip, device and system 版權信息

Advanced liquid metal cooling for chip, device and system 本書特色

隨著微納電子技術的飛速發展,高集成度芯片、光電器件與系統等引發的熱障問題,已成為制約其可持續發展的關鍵瓶頸。這種發展瓶頸對先進散熱技術提出了前所未有的要求。在這種背景下,本書作者于2001年前后首次在芯片冷卻領域引入具有通用性的液態金屬散熱技術,隨后在國內外引發重大反響和后續大量研究,成為近年來該領域內前沿熱點和極具應用前景的重大發展方向之一。影響范圍甚廣,正為能源、電子信息、先進制造、國防軍事等領域的發展帶來顛覆性變革,并將催生出一系列戰略性新興產業。 為推動這一新興學科領域的可持續健康發展,本書作者將其十七八年的研究成果系統梳理和總結,編撰成本專著。本書系統圍繞液態金屬散熱技術,集中闡述了其中涉及的新方法、新原理與典型應用,基本涵蓋了液態金屬芯片散熱領域中的所有重大主題,包括:液態金屬的基礎熱物理特性、流動特性、材料相容性、驅動方法、傳熱特性、微通道散熱技術、相變熱控技術以及一些實際器件的應用等方面,學科領域跨度大,內容嶄新,系國內外該領域首部著作,是一本兼具理論學術意義和實際參考價值的學術著作。以英文版推出,是為了更好地將中國原創科研成果推向國際,因此,具有非常及時和重要的出版價值。

Advanced liquid metal cooling for chip, device and system 內容簡介

隨著微納電子技術的飛速發展,高集成度芯片、光電器件與系統等引發的熱障問題,已成為制約其可持續發展的關鍵瓶頸。這種發展瓶頸對先進散熱技術提出了前所未有的要求。在這種背景下,本書作者于2001年前后首次在芯片冷卻領域引入具有通用性的液態金屬散熱技術,隨后在國內外引發重大反響和后續大量研究,成為近年來該領域內前沿熱點和極具應用前景的重大發展方向之一。影響范圍甚廣,正為能源、電子信息、先進制造、國防軍事等領域的發展帶來顛覆性變革,并將催生出一系列戰略性新興產業。 為推動這一新興學科領域的可持續健康發展,本書作者將其十七八年的研究成果系統梳理和總結,編撰成本專著。本書系統圍繞液態金屬散熱技術,集中闡述了其中涉及的新方法、新原理與典型應用,基本涵蓋了液態金屬芯片散熱領域中的所有重大主題,包括:液態金屬的基礎熱物理特性、流動特性、材料相容性、驅動方法、傳熱特性、微通道散熱技術、相變熱控技術以及一些實際器件的應用等方面,學科領域跨度大,內容嶄新,系國內外該領域首部著作,是一本兼具理論學術意義和實際參考價值的學術著作。以英文版推出,是為了更好地將中國原創科研成果推向國際,因此,具有非常及時和重要的出版價值。

Advanced liquid metal cooling for chip, device and system 目錄

Chapter 1Introduction1 1.1Increasing Challenges in Advanced Cooling2
1.2Water Cooling and New Alternatives4
1.3Basic Features of Conventional Heat Exchangers6
1.3.1Heat Exchanger Classification by Geometry and
Structure7
1.3.2Heat Exchange Enhancement Techniques12
1.4Limitations of Waterbased Heat Exchanger13
1.4.1Overall Properties of Water13
1.4.2Adhesion and Cohesion14
1.4.3Surface Tension14
1.4.4Specific Heat14
1.4.5Conductivity15
1.5Liquid Metal Coolant for Chip Cooling15
1.6Some Facts about Liquid Metal17
1.7Revisit of Traditional Liquid Metal Cooling19
1.8Liquid Metal Enabled Innovation on Conventional
Heat Exchanger22
1.9Potential Application Areas of Liquid Metal Thermal
Management 23
1.9.1Chip Cooling23
1.9.2Heat Recovery25
1.9.3Energy System27
1.9.4Heat Transfer Process Engineering28
1.9.5Aerospace Exploration28
1.9.6Appliances in Large Power Systems29
1.9.7Thermal Interface Material29
1.9.8More New Conceptual Applications31
1.10Technical and Scientific Challenges in Liquid Metal
Heat Transfer 32
1.11Conclusion35
References36
Chapter 2Typical Liquid Metal Medium and Properties for Advanced
Cooling44 2.1Typical Properties of Liquid Metals45
2.1.1Low Melting Point45
2.1.2Thermal Conductivity45
2.1.3Surface Tension48
2.1.4Heat Capacity49
2.1.5Boiling Temperature50
2.1.6Subcooling Point50
2.1.7Viscosity51
2.1.8Electrical Properties52
2.1.9Magnetic Properties52
2.1.10Chemical Properties52
2.2Alloy Candidates with Low Melting Point53
2.2.1Overview53
2.2.2GaIn Alloy53
2.2.3NaK Alloy55
2.2.4Woods Metal55
2.3Nano Liquid Metal as More Conductive Coolant or Grease55
2.3.1Technical Concept of Nano Liquid Metal55
2.3.2Performance of Typical Nano Liquid Metals56
2.4Liquid Metal Genome towards New Material Discovery61
2.4.1About Liquid Metal Material Genome61
2.4.2Urgent Needs on New Liquid Metals62
2.4.3Category of Room Temperature Liquid Metal Genome62
2.5Fundamental Routes toward Finding New Liquid Metal Materials64
2.5.1Alloying Strategy from Single Metal Element64
2.5.2Making Composite from Binary Liquid Alloys65
2.5.3Realizing Composite from Multicomponent Liquid Alloys66
2.5.4Nano Technological Strategies66
2.5.5Additional Physical Approaches66
2.5.6Chemical Strategies67
2.6Fundamental Theories for Material Discovery68
2.6.1Calculation of Phase Diagram (CALPHAD)68
2.6.2First Principle Prediction69
2.6.3Molecular Dynamics Simulation69
2.6.4Other Theoretical Methods70
2.7Experimental Ways for Material Discovery70
2.8Theoretical and Technical Challenges71
2.9Conclusion73
References73Chapter 3Fabrications and Characterizations of Liquid Metal Cooling
Materials80
3.1Preparation Methods81
3.1.1Alloying81
3.1.2Oxidizing81
3.1.3Fabrication of Liquid Metal Droplets82
3.1.4Preparation of Liquid Metal Nano Particles83
3.1.5Coating of Liquid Metal Surface84
3.1.6Loading with Nano Materials86
3.1.7Compositing with Other Materials87
3.2Characterizations of Functional Liquid Metal Materials87
3.2.1Regulation of Thermal Properties88
3.2.2Regulation of Electrical Properties88
3.2.3Regulation of Magnetic Properties89
3.2.4Regulation of Fluidic Properties89
3.2.5Regulation of Chemical Properties89
3.3Liquid Metal as Energy Harvesting or Conversion Medium90
3.4Low Temperature Liquid Metal Used in Harsh Environment91
3.4.1Working of Liquid Metal under Cryogenic Situation91
3.4.2Basics about Cryogenic Cooling92
3.5Potential Metal Candidates with Melting Point below Zero
Centigrade 94
3.5.1Mercury95
3.5.2Particularities of Gallium or Its alloys96
3.5.3Alkali Metal and Its Alloys97
3.6Ways to Make Low Temperature Liquid Metal100
3.6.1Phase Diagram Calculation101
3.6.2Subcooling of Metal Melt102
3.6.3Experimental Approaches104
3.7Potential Roles for Future Low Temperature Liquid Metal105
3.8Conclusion107
References107Chapter 4Corrosion Issues in Liquid Metalbased Thermal Management114
4.1Corrosions Caused by Liquid Metal on Specific Substrates115
4.2Characterization of Liquid Metal Corrosion116
4.3Corrosion Trends of Typical Substrates with Liquid Gallium117
4.4Microscopic SEM/EDS Observation and Analysis119
4.4.1SEM Quantification of Corroded Surface119
4.4.2EDS Quantification of Corroded Surface120
4.4.3EDS Quantification of Corroded Crosssection123
4.5Factors Affecting the Liquid Metal Corrosion124
4.6Anticorrosion of Liquid Metal on Substrate126
4.7Quantification of Gallium Alloy on AOA128
4.7.1Thermal Transfer Simulation and Setting of Anodized
Aluminum Alloy128
4.7.2Thermal Transfer Performance130
4.7.3Corrosion Resistance of Anodized Aluminum Alloy131
4.8Conclusion132
References133Chapter 5Nano Liquid Metal towards Making Enhanced Materials135
5.1Typical Features of Nano Liquid Metals136
5.2Application Issues of Nano Liquid Metals137
5.2.1Energy Management137
5.2.2Energy Conversion138
5.2.3Energy Storage139
5.2.4Interactions between Liquid Metal and Micro/nano
Particles140
5.2.5Fabrication of Micro/nano Liquid Metal Droplets140
5.2.6Fabrication of Micro/nano Liquid Metal Motors140
5.3Scientific and Technical Challenges141
5.4Fabrication of Magnetic Nano Liquid Metal142
5.5Nano Particles Enabled Magnetic Liquid Metal Materials142
5.6Liquid Metal Phagocytosis Effect to Make Functional Materials149
5.7Conclusion159
References160Chapter 6Liquid Metalbased Thermal Interface Material165
6.1About Thermal Interface Materials166
6.2Galliumbased Thermal Interface Materials167
6.2.1Preparation of GBTIM167
6.2.2Characterization of GBTIM167
6.3Practical Working of Galliumbased Thermal Interface Materials 169
6.4Liquid Metal Amalgams with Enhanced and Tunable Thermal
Properties175
6.5Performance Evaluation of Liquid Metal Amalgams177
6.5.1Material Preparation and Characterization177
6.5.2Chemical Composition Characterization180
6.5.3Characterization of Electrical and Thermal Conductivities183
6.5.4DSC Characterization185
6.5.5Mechanical Property Characterization186
6.5.6Adhesionguaranteed Direct Painting189
6.5.7Formabilityguaranteed Moulding190
6.6Thermally Conductive and Electrically Resistive TIM191
6.7Fabrication of Thermally Conductive and Electrically Resistive
TIM193
6.7.1Fabrication Principle193
6.7.2Characterization of LMP Grease194
6.7.3Performance of LMP Grease195
6.8Metallic Bond Enabled Wetting between Liquid Metal and Metal
Substrate203
6.8.1Metallic Bond Enabled Wetting Behavior at Liquid
Ga/CuGa2 Interfaces203
6.8.2Quantification205
6.8.3Theoretical Simulation206
6.9Bulk Expansion Effect of Galliumbased Thermal Interface
Material 215
6.9.1Experimental Phenomena215
6.9.2Influencing Factors216
6.9.3Material Characterization218
6.10Conclusion221
References222Chapter 7Low Melting Point Metal Enabled Phase Change Cooling227
7.1About Phase Change Materials228
7.2Classification of PCMs229
7.3Typical Features of Low Melting Point Metals as PCMs232
7.3.1Selection Criterion of PCMs232
7.3.2Properties of Low Melting Point Metal PCMs233
7.4Case of Using Low Melting Point Metal PCM for Smart Cooling of
USB Disk234
7.5Case of Using Low Melting Point Metal PCM for Smart Cooling
of Mobile Phone237
7.6Potential Application Areas of Low Melting Point Metal PCM246
7.6.1PCM Used in Solar Energy246
7.6.2PCM Used in Thermal Comfort Maintenance249
7.6.3PCM Used in Building Heat Storage252
7.6.4PCM Used in Thermal Management on Various
Electronic Devices 257
7.6.5PCM Used in Antilaser Heating262
7.7Theory to Quantify Phase Change Process of Low Melting Point
Metal 262
7.7.1Enthalpyporosity Method262
7.7.2Validation of Numerical Method264
7.7.3Comparison with Conventional PCM Paraffin265
7.7.4Dimensionless Correlations: Constant Wall Temperature269
7.7.5Dimensionless Correlations: Constant Heat Flux270
7.7.6Discussion on High Ra Number Condition271
7.8Phase Change of Low Melting Point Metal around Horizontal
Cylinder 272
7.8.1Theoretical Model273
7.8.2Comparison with Conventional PCM Paraffin276
7.8.3Constant Wall Temperature Case278
7.8.4Constant Wall Heat Flux Case281
7.9Low Melting Point Metal PCM Heat Sink with Internal Fins282
7.9.1Performance Enhancement of Low Melting Point Metal
PCM282
7.9.2PCM Preparation and Characterization282
7.9.3Experimental Setup284
7.9.4Transient Thermal Performance285
7.9.5Cyclic Performance287
7.9.6Numerical Modeling288
7.10Optimization of Low Melting Point Metal PCM Heat Sink290
7.10.1Optimization of PCM290
7.10.2Theoretical Evaluation291
7.10.3Problem Description293
7.10.4Numerical Method294
7.10.5Effect of Fin Number295
7.10.6Effect of Fin Width Fraction297
7.10.7Base Thickness and Structural Material298
7.10.8Heating Condition299
7.11Lattice Boltzmann Modeling of Phase Change of Low Melting
Point Metal 300
7.12Emerging Scientific Issues and Technical Challenges303
7.13Conclusion304
References305Chapter 8Fluidic Properties of Liquid Metal313
8.1Splashing Phenomena of Liquid Metal Droplet313
8.1.1About Impact of Liquid Metal Droplets314
8.1.2Experiments on Impact of Liquid Metal Droplets314
8.1.3Droplet Shapes during the Impact Dynamics316
8.1.4Quantification of the Impact Process319
8.1.5Splashing Shapes323
8.2Impact Dynamics of Water Film Coated Liquid Metal Droplet326
8.2.1Water Film Coated Liquid Metal Droplet326
8.2.2Impact Dynamics of Water Film Coated Liquid Metal
Droplet327
8.3Hybrid Fluids Made of Liquid Metal and Allied Solution334
8.4Fluidic Behaviors of Hybrid Liquid Metal and Solution335
8.4.1Electric Field Actuated Liquid Metal Flow335
8.4.2Selfdriven Motion of Liquid Metal337
8.4.3Coupled Fields on Liquid Metal Machine340
8.5Theoretical Foundation of Liquid Metal Flow341
8.5.1Physical and Chemical Properties of Gallium341
8.5.2Movement Theory342
8.5.3Deformation Theory345
8.6Theoretical Simulation Method346
8.6.1Volumeoffluid Method347
8.6.2Lattice Boltzmann Method348
8.6.3Boundary Integral Method349
8.6.4Finiteelement Method350
8.6.5Fronttracking Method350
8.7Challenges and Prospects351
8.8Conclusion352
References352Chapter 9Liquid Metal Flow Cooling and Its Applications in Diverse
Areas357
9.1Comparison between Liquid Metal Cooling and Water Cooling358
9.2Electromagnetic Pump Driven Liquid Metal Cooling363
9.3Design of Practical Liquid Metal Cooling Device377
9.3.1Thermal Resistance Evaluation Theory378
9.3.2Electromagnetic Pump Design Principles380
9.3.3Radiator Design Principles381
9.3.4System Fabrication and Characterization382
9.3.5System Cooling Capability Evaluation384
9.3.6Economic Analysis and Other Practical Issues385
9.4Rotational Magnetic Field Induced Flow Cooling of Liquid Metal388
9.5Liquid Metal Cooling for Thermal Management of High Power
LEDs390
9.5.1Liquid Metal Cooling of LED390
9.5.2Experimental Setup391
9.5.3Heat Dissipation Performance Evaluation392
9.5.4Liquid Metal Cooling of Large Power Street LED Lamp397
9.6Optimization of High Performance Liquid Metal CPU Cooling399
9.6.1Optimization Criterions399
9.6.2Schematic Thermal Resistance Model400
9.6.3Parameter Optimization of Electromagnetic Pump401
9.6.4Parameter Optimization of Fin Radiator404
9.6.5Product Design and Evaluation404
9.7Liquid Metal Cooling System for More Practical Systems408
9.7.1Liquid Metal Cooling for Desktop and Notebook
Computer408
9.7.2Cooling Transformer in Electricity Delivery via Liquid
Metal409
9.8Thermal Management of Liion Battery with Liquid Metal411
9.8.1About Cooling of Electric Vehicle411
9.8.2Theoretical Analysis412
9.8.3Cooling Capability Evaluation414
9.8.4Pump Power Consumption416
9.8.5Temperature Uniformity417
9.8.6Numerical Simulation Model418
9.8.7Computational Results420
9.9Thawing Issue of Frozen Liquid Metal Coolant424
9.10Conclusion427
References428Chapter 10Selfadaptable Liquid Metal Cooling432
10.1Electromagnetic Driving of Liquid Metal Coolant432
10.2Heat Driven Thermoelectricelectromagnetic Generator433
10.3Selfadaptive Waste Heat Driven Liquid Metal Cooling435
10.4Thermal Resistance Analysis on Heat Driven Liquid Metal
Cooling System440
10.5Thermosyphon Effect Driven Liquid Metal Cooling443
10.6Thermal Resistance Analysis on Thermosyphon Effect Driven
Liquid Metal Cooling 448
10.7Design of a Practical Selfdriven Liquid Metal Cooling Device
in a Closed Cabinet452
10.7.1Practical Application of Selfdriven Liquid Metal
Cooling452
10.7.2Cooling Capability Evaluation453
10.7.3Convective Heat Transfer Thermal Resistance of Liquid
Metal455
10.7.4System Fabrication and Test458
10.8Working of a Practical Selfdriven Liquid Metal Cooling Device
in a Closed Cabinet460
10.9Conclusion464
References465Chapter 11Liquid Metal Cooling in Small Space468
11.1Liquid Metalbased Miniaturized or Micro Chip Cooling Device469
11.1.1Miniaturized Chip Cooling Device469
11.1.2MEMSbased Chip Cooling Device470
11.1.3MEMSbased Liquid Metal Cooling Device in Harsh
Environment 472
11.2Heat Spreader Based on Room Temperature Liquid Metal472
11.2.1About Heat Spreader472
11.2.2Fundamental Equations473
11.2.3Performance Evaluation474
11.3Liquid Metal Blade Heat Dissipator478
11.4Liquid Metalbased Mini/micro Channel Cooling Device485
11.4.1About Mini/micro Channel Cooling Device485
11.4.2Pressure Difference under Different Coolant Volume
Flow487
11.4.3Convection Coefficient under Different Coolant Volume
Flow488
11.4.4Thermal Resistance under Different Pump Power489
11.4.5Flow Pattern Discrimination490
11.4.6Flow Resistance Comparison491
11.4.7Convective Heat Transfer Coefficient Comparison492
11.4.8Other Flowing Issues493
11.4.9Liquid Metal Alloybased Mini Channel Heat
Exchanger494
11.5Hybrid Mini/micro Channel Heat Sink Based on Liquid Metal and
Water494
11.5.1Hybrid Mini/micro Channel Heat Sink495
11.5.2Materials496
11.5.3Test Platform497
11.5.4Cooling Capability Comparison with Pure Water Cooling
System 498
11.6Flow and Thermal Modeling and Optimization of Micro/
mini Channel Heat Sink502
11.6.1About Micro/mini Channel Heat Sink502
11.6.2Flow and Thermal Model503
11.6.3Optimization of Micro/mini Channel Heat Sink505
11.6.4Micro Channel Water Cooling505
11.6.5Channel Aspect Ratio506
11.6.6Channel Number and Width Ratio507
11.6.7Velocity508
11.6.8Base Thickness509
11.6.9Structural Material510
11.6.10Mini Channel Liquid Metal Cooling510
11.6.11Mini Channel Water Cooling513
11.7Conclusion514
References515Chapter 12Hybrid Cooling via Liquid Metal and Aqueous Solution517
12.1Electrically Driven Hybrid Cooling via Liquid Metal and
Aqueous Solution518
12.1.1Coolants and Driving Strategy518
12.1.2System Designing519
12.1.3Continuous Actuation of Liquid Metal Spheres Circular
Motion 519
12.1.4Heat Transfer Performance520
12.1.5Thermal Resistance Components521
12.1.6Heat Transfer Capacity under Different Driving Voltages522
12.1.7Electrical Driving of Liquid Metal Droplet523
12.1.8Liquid Metal Droplets Periodic Circular Motion in
Different Conditions 524
12.1.9More Potential Coolants with Improved Performances525
12.2Alternating Electric Field Actuated Liquid Metal Cooling526
12.2.1Liquid Metal as Water Driving Pump526
12.2.2Performance of the Liquid Metal Droplet Driven Flow527
12.3Selfdriving Thermopneumatic Liquid Metal Cooling or
Energy Harvesting535
12.3.1Hybrid Coolants towards Automatic Heating Driving535
12.3.2Running of Thermopneumatic Liquid Metal Energy
Harvester536
12.4Hybrid Liquid Metalwater Cooling System for Heat Dissipation541
12.4.1Combined Liquid Metal Heat Transport and Water
Cooling541
12.4.2Working Performances of Combined Liquid Metal and
Water Cooling542
12.4.3Theoretical Analysis on Combined Liquid Metal and
Water Cooling547
12.5Electromagnetic Driving Rotation of Hybrid Liquid Metal and
Solution Pool551
12.5.1Electromagnetic Driving Rotation of Hybrid Fluids551
12.5.2Rotational Motion of Liquid Metal in Electromagnetic
Field552
12.5.3Controlling the Rotating Motion of Liquid Metal Pool555
12.5.4Liquid Metal Patterns Induced by Electric Capillary
Force559
12.6Dynamic Interactions of Leidenfrost Droplets on Liquid Metal
Surface566
12.7Conclusion574
References575Chapter 13Liquid Metal for the Harvesting of Heat and Energy577
13.1Direct Harvesting of Solar Thermal Power or Lowgrade Heat580
13.2Liquid Metalbased Thermoelectric Generation581
13.3Thermionic Technology587
13.4Liquid Metalbased MHD Power Generation589
13.5Alkali Metalbased Thermoelectric Conversion Technology590
13.6Direct Solar Thermoelectric Power Generation591
13.7Liquid Metal Cooled Photovoltaic Cell596
13.7.1Thermal Management for Optical Concentration Solar
Cells596
13.7.2Experimental System597
13.7.3Performance Evaluation598
13.7.4Theoretical Evaluation on Thermal Resistance601
13.8Solar Thermionic Power Generation605
13.9MHD and AMTEC Technology609
13.10Cascade System612
13.11Remarks and Future Developments614
13.12Harvesting Heat to Generate Electricity via Liquid Metal
Thermosyphon Effect616
13.13Liquid Metal Thermal Joint619
13.14Conclusion626
References626Chapter 14Combinatorial Liquid Metal Heat Transfer towards Extreme
Cooling630
14.1Proposition of Combinatorial Liquid Metal Heat Transfer630
14.2Basic Cooling System633
14.2.1Abstract Division of A Cooling System633
14.2.2Heat Acquisition Segment635
14.2.3Heat Rejection Segment637
14.2.4Heat Transport Segment637
14.3LMPM PCM Combined Cooling System639
14.3.1LMPM PCM Cooling639
14.3.2LMPM PCM Against Thermal Shock642
14.4Liquid Metal Convectionbased Cooling Systems642
14.5All Liquid Metal Combined Cooling System645
14.6Other Alternative Combinations645
14.7Conclusion646
References647Appendix653 Index656
展開全部

Advanced liquid metal cooling for chip, device and system 作者簡介

清華大學醫學院生物醫學工程系教授,中國科學院理化技術研究所研究員。先后入選中國科學院及清華大學百人計劃,國家杰出青年科學基金獲得者。長期從事液態金屬、生物醫學工程與工程熱物理等領域交叉科學問題研究并作出系列開創性貢獻。發現液態金屬諸多全新科學現象、基礎效應和變革性應用途徑,開辟了液態金屬在生物醫療、柔性機器人、印刷電子、3D打印、先進能源以及芯片冷卻等領域突破性應用,成果在世界范圍產生廣泛影響出版14部跨學科前沿著作及20篇應邀著作章節;發表期刊論文480余篇(20余篇英文封面或封底故事);申報發明專利200余項,已獲授權130余項。曾獲國際傳熱界最高獎之一“The William Begell Medal”、全國首屆創新爭先獎、中國制冷學會技術發明一等獎、ASME會刊Journal of Electronic Packaging年度唯一最佳論文獎、入圍及入選“兩院院士評選中國十大科技進展新聞”各1次,入選CCTV 2015年度十大科技創新人物等。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: led冷热冲击试验箱_LED高低温冲击试验箱_老化试验箱-爱佩百科 | elisa试剂盒价格-酶联免疫试剂盒-猪elisa试剂盒-上海恒远生物科技有限公司 | loft装修,上海嘉定酒店式公寓装修公司—曼城装饰 | YT保温材料_YT无机保温砂浆_外墙保温材料_南阳银通节能建材高新技术开发有限公司 | 全自动不干胶贴标机_套标机-上海今昂贴标机生产厂家 | 头条搜索极速版下载安装免费新版,头条搜索极速版邀请码怎么填写? - 欧远全 | ISO9001认证咨询_iso9001企业认证代理机构_14001|18001|16949|50430认证-艾世欧认证网 | 潍坊大集网-潍坊信息港-潍坊信息网 | MTK核心板|MTK开发板|MTK模块|4G核心板|4G模块|5G核心板|5G模块|安卓核心板|安卓模块|高通核心板-深圳市新移科技有限公司 | 三效蒸发器_多效蒸发器价格_四效三效蒸发器厂家-青岛康景辉 | 五轴加工中心_数控加工中心_铝型材加工中心-罗威斯 | 河南包装袋厂家_河南真空袋批发价格_河南服装袋定制-恒源达包装制品 | 锤式粉碎机,医药粉碎机,锥式粉碎机-无锡市迪麦森机械制造有限公司 | 结晶点测定仪-润滑脂滴点测定仪-大连煜烁 | 上海宿田自动化设备有限公司-双面/平面/单面贴标机 | 列管冷凝器,刮板蒸发器,外盘管反应釜厂家-无锡曼旺化工设备有限公司 | 福建省教师资格证-福建教师资格证考试网| IIS7站长之家-站长工具-爱网站请使用IIS7站长综合查询工具,中国站长【WWW.IIS7.COM】 | 千斤顶,液压千斤顶-力良企业,专业的液压千斤顶制造商,shliliang.com | 并离网逆变器_高频UPS电源定制_户用储能光伏逆变器厂家-深圳市索克新能源 | 防爆暖风机_防爆电暖器_防爆电暖风机_防爆电热油汀_南阳市中通智能科技集团有限公司 | 防爆暖风机_防爆电暖器_防爆电暖风机_防爆电热油汀_南阳市中通智能科技集团有限公司 | 心肺复苏模拟人|医学模型|急救护理模型|医学教学模型上海康人医学仪器设备有限公司 | 消泡剂_水处理消泡剂_切削液消泡剂_涂料消泡剂_有机硅消泡剂_广州中万新材料生产厂家 | 加中寰球移民官网-美国移民公司,移民机构,移民中介,移民咨询,投资移民 | 熔体泵|换网器|熔体齿轮泵|熔体计量泵厂家-郑州巴特熔体泵有限公司 | 橡胶接头_橡胶软接头_可曲挠橡胶接头-巩义市创伟机械制造有限公司 | 高压无油空压机_无油水润滑空压机_水润滑无油螺杆空压机_无油空压机厂家-科普柯超滤(广东)节能科技有限公司 | 雪花制冰机(实验室雪花制冰机)百科| hdpe土工膜-防渗膜-复合土工膜-长丝土工布价格-厂家直销「恒阳新材料」-山东恒阳新材料有限公司 ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 依维柯自动挡房车,自行式国产改装房车,小型房车价格,中国十大房车品牌_南京拓锐斯特房车 - 南京拓锐斯特房车 | 半自动预灌装机,卡式瓶灌装机,注射器灌装机,给药器灌装机,大输液灌装机,西林瓶灌装机-长沙一星制药机械有限公司 | 求是网 - 思想建党 理论强党 | 百度网站优化,关键词排名,SEO优化-搜索引擎营销推广 | 中空玻璃生产线,玻璃加工设备,全自动封胶线,铝条折弯机,双组份打胶机,丁基胶/卧式/立式全自动涂布机,玻璃设备-山东昌盛数控设备有限公司 | FAG轴承,苏州FAG轴承,德国FAG轴承-恩梯必传动设备(苏州)有限公司 | 全国国际学校排名_国际学校招生入学及学费-学校大全网 | 河南不锈钢水箱_地埋水箱_镀锌板水箱_消防水箱厂家-河南联固供水设备有限公司 | 铝合金重力铸造_铝合金翻砂铸造_铝铸件厂家-东莞市铝得旺五金制品有限公司 | 贵州水玻璃_-贵阳花溪闽兴水玻璃厂 | 北京律师咨询_知名专业北京律师事务所_免费法律咨询 |