掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
闖進數學世界――探秘歷史名題
-
>
中醫基礎理論
-
>
當代中國政府與政治(新編21世紀公共管理系列教材)
-
>
高校軍事課教程
-
>
思想道德與法治(2021年版)
-
>
毛澤東思想和中國特色社會主義理論體系概論(2021年版)
-
>
中醫內科學·全國中醫藥行業高等教育“十四五”規劃教材
買過本商品的人還買了
深度學習導論與應用實踐 版權信息
- ISBN:9787302534396
- 條形碼:9787302534396 ; 978-7-302-53439-6
- 裝幀:平裝-膠訂
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
深度學習導論與應用實踐 本書特色
本書從數學基礎與編程基礎開始,逐步引導讀者領略深度學習的起源與發展,向讀者介紹深度學習在計算機視覺、自然語言處理等方面的實際應用,并為讀者呈現*前沿的深度學習研究進展,同時深入剖析技術原理,帶領讀者逐步推導深度學習背后的數學模型,并結合飛槳(PaddlePaddle)深度學習框架實現項目,代碼清晰,易于理解。本書深入淺出,將原理解析與國內流行的深度學習框架飛槳實例結合,旨在使讀者更全面、更清晰地掌握深度學習的前沿技術。
本書可作為深度學習的入門讀物,也可作為信息學科本科生和研究生的教材,還可供信息產業從業者使用。
深度學習導論與應用實踐 內容簡介
首部產學研深度結合、千余名高校AI教師實戰驗證的專業圖書
深度學習導論與應用實踐 目錄
目錄
第1章數學基礎 1.1數據表示——標量、向量、矩陣和張量 1.1.1標量、向量、矩陣和張量 1.1.2向量的范數 1.1.3常用的向量 1.1.4常見的矩陣 1.1.5矩陣的操作 1.1.6張量的常用操作 1.2優化的基礎——導數及其應用 1.2.1導數 1.2.2泰勒公式 1.2.3拉格朗日乘數法 1.3概率模型的基礎——概率論 1.3.1隨機變量 1.3.2概率分布 1.3.3邊緣概率 1.3.4條件概率 1.3.5獨立性 1.3.6期望、方差與協方差 1.3.7常用的概率分布 1.4習題 第2章Python入門 2.1Python簡介 2.2Python基礎語法 2.2.1數據結構類型 2.2.2運算符 2.2.3條件語句 2.2.4循環語句 2.2.5函數 2.2.6面向對象與類 2.2.7腳本 2.3NumPy 2.3.1NumPy數組創建與訪問 2.3.2NumPy數組計算 2.3.3廣播 2.4Matplotlib 2.4.1Matplotlib的安裝 2.4.2Matplotlib圖像的組成部分 2.4.3Pyplot繪制簡單圖形 2.4.4Matplotlib多圖像繪制
2.5實踐: 豆瓣高分電影爬取 2.5.1思路分析 2.5.2獲取頁面 2.5.3解析頁面 2.5.4存儲數據 2.5.5數據展示與分析 2.6習題 第3章機器學習基礎 3.1機器學習概述 3.1.1機器學習定義與基本術語 3.1.2機器學習的三要素 3.1.3機器學習方法概述 3.2數據預處理 3.2.1數據清洗 3.2.2數據集拆分 3.2.3數據集不平衡 3.3特征工程 3.3.1特征編碼 3.3.2特征選擇與特征降維 3.3.3特征標準化 3.4模型評估 3.5實踐: 鳶尾花分類 3.5.1數據準備 3.5.2配置模型 3.5.3模型訓練 3.5.4數據可視化 3.6習題 第4章深度學習基礎 4.1深度學習發展歷程 4.2感知機 4.2.1感知機的起源 4.2.2感知機的局限性 4.3前饋神經網絡 4.3.1神經元 4.3.2網絡結構 4.3.3訓練與預測 4.3.4反向傳播算法 4.4提升神經網絡訓練的技巧 4.4.1參數更新方法 4.4.2數據預處理 4.4.3參數的初始化 4.4.4正則化 4.5深度學習框架 4.5.1深度學習框架的作用 4.5.2常見深度學習框架 4.5.3飛槳概述 4.6實踐: 手寫數字識別 4.6.1數據準備 4.6.2網絡結構定義 4.6.3網絡訓練 4.6.4網絡預測 4.7習題 第5章卷積神經網絡 5.1概述 5.2整體結構 5.3卷積層 5.3.1全連接層的問題 5.3.2卷積運算 5.3.3卷積的導數 5.3.4卷積層操作 5.3.5矩陣快速卷積 5.4池化層 5.5歸一化層 5.6參數學習 5.7典型卷積神經網絡 5.7.1LeNet 5.7.2AlexNet 5.7.3VGGNet 5.7.4Inception 5.7.5ResNet 5.7.6DenseNet 5.7.7MobileNet 5.7.8ShuffleNet 5.8實踐: 貓狗識別 5.8.1數據準備 5.8.2網絡配置 5.8.3網絡訓練 5.8.4網絡預測 5.9習題 第6章循環神經網絡 6.1循環神經網絡簡介 6.1.1循環神經網絡的結構與計算能力 6.1.2參數學習 6.1.3循環神經網絡變種結構 6.1.4深度循環神經網絡 6.1.5遞歸神經網絡 6.2長期依賴和門控RNN 6.2.1長期依賴的挑戰 6.2.2循環神經網絡的長期依賴問題 6.2.3門控RNN 6.2.4優化長期依賴 6.3雙向RNN 6.4序列到序列架構 6.4.1Seq2Seq 6.4.2注意力機制 6.5實踐: 電影評論情感分析 6.5.1數據準備 6.5.2網絡結構定義 6.5.3網絡訓練 6.5.4網絡預測 6.6習題 第7章深度學習進階 7.1深度生成模型 7.1.1變分自編碼器 7.1.2生成對抗網絡 7.2深度強化學習 7.2.1強化學習模型 7.2.2強化學習分類 7.2.3深度強化學習 7.2.4深度Q網絡 7.2.5深度強化學習應用 7.3遷移學習 7.3.1遷移學習的定義與分類 7.3.2遷移學習的基本方法 7.4實踐: 生成對抗網絡 7.4.1數據準備 7.4.2網絡配置 7.4.3模型訓練與預測 7.5習題 第8章深度學習應用: 計算機視覺 8.1目標檢測 8.1.1傳統目標檢測 8.1.2基于區域的卷積神經網絡目標檢測 8.1.3基于回歸的卷積神經網絡目標檢測 8.2語義分割 8.2.1傳統語義分割方法 8.2.2基于卷積神經網絡的語義分割 8.3實踐: 目標檢測 8.3.1數據準備 8.3.2網絡配置 8.3.3模型訓練 8.3.4模型預測 8.4習題 第9章深度學習應用: 自然語言處理 9.1自然語言處理的基本過程 9.1.1獲取語料 9.1.2語料預處理 9.1.3特征工程 9.2自然語言處理應用 9.2.1文本分類 9.2.2機器翻譯 9.2.3自動問答 9.3實踐: 機器翻譯 9.3.1數據準備 9.3.2網絡結構定義 9.3.3網絡訓練 9.3.4網絡預測 9.4習題 參考文獻
第1章數學基礎 1.1數據表示——標量、向量、矩陣和張量 1.1.1標量、向量、矩陣和張量 1.1.2向量的范數 1.1.3常用的向量 1.1.4常見的矩陣 1.1.5矩陣的操作 1.1.6張量的常用操作 1.2優化的基礎——導數及其應用 1.2.1導數 1.2.2泰勒公式 1.2.3拉格朗日乘數法 1.3概率模型的基礎——概率論 1.3.1隨機變量 1.3.2概率分布 1.3.3邊緣概率 1.3.4條件概率 1.3.5獨立性 1.3.6期望、方差與協方差 1.3.7常用的概率分布 1.4習題 第2章Python入門 2.1Python簡介 2.2Python基礎語法 2.2.1數據結構類型 2.2.2運算符 2.2.3條件語句 2.2.4循環語句 2.2.5函數 2.2.6面向對象與類 2.2.7腳本 2.3NumPy 2.3.1NumPy數組創建與訪問 2.3.2NumPy數組計算 2.3.3廣播 2.4Matplotlib 2.4.1Matplotlib的安裝 2.4.2Matplotlib圖像的組成部分 2.4.3Pyplot繪制簡單圖形 2.4.4Matplotlib多圖像繪制
2.5實踐: 豆瓣高分電影爬取 2.5.1思路分析 2.5.2獲取頁面 2.5.3解析頁面 2.5.4存儲數據 2.5.5數據展示與分析 2.6習題 第3章機器學習基礎 3.1機器學習概述 3.1.1機器學習定義與基本術語 3.1.2機器學習的三要素 3.1.3機器學習方法概述 3.2數據預處理 3.2.1數據清洗 3.2.2數據集拆分 3.2.3數據集不平衡 3.3特征工程 3.3.1特征編碼 3.3.2特征選擇與特征降維 3.3.3特征標準化 3.4模型評估 3.5實踐: 鳶尾花分類 3.5.1數據準備 3.5.2配置模型 3.5.3模型訓練 3.5.4數據可視化 3.6習題 第4章深度學習基礎 4.1深度學習發展歷程 4.2感知機 4.2.1感知機的起源 4.2.2感知機的局限性 4.3前饋神經網絡 4.3.1神經元 4.3.2網絡結構 4.3.3訓練與預測 4.3.4反向傳播算法 4.4提升神經網絡訓練的技巧 4.4.1參數更新方法 4.4.2數據預處理 4.4.3參數的初始化 4.4.4正則化 4.5深度學習框架 4.5.1深度學習框架的作用 4.5.2常見深度學習框架 4.5.3飛槳概述 4.6實踐: 手寫數字識別 4.6.1數據準備 4.6.2網絡結構定義 4.6.3網絡訓練 4.6.4網絡預測 4.7習題 第5章卷積神經網絡 5.1概述 5.2整體結構 5.3卷積層 5.3.1全連接層的問題 5.3.2卷積運算 5.3.3卷積的導數 5.3.4卷積層操作 5.3.5矩陣快速卷積 5.4池化層 5.5歸一化層 5.6參數學習 5.7典型卷積神經網絡 5.7.1LeNet 5.7.2AlexNet 5.7.3VGGNet 5.7.4Inception 5.7.5ResNet 5.7.6DenseNet 5.7.7MobileNet 5.7.8ShuffleNet 5.8實踐: 貓狗識別 5.8.1數據準備 5.8.2網絡配置 5.8.3網絡訓練 5.8.4網絡預測 5.9習題 第6章循環神經網絡 6.1循環神經網絡簡介 6.1.1循環神經網絡的結構與計算能力 6.1.2參數學習 6.1.3循環神經網絡變種結構 6.1.4深度循環神經網絡 6.1.5遞歸神經網絡 6.2長期依賴和門控RNN 6.2.1長期依賴的挑戰 6.2.2循環神經網絡的長期依賴問題 6.2.3門控RNN 6.2.4優化長期依賴 6.3雙向RNN 6.4序列到序列架構 6.4.1Seq2Seq 6.4.2注意力機制 6.5實踐: 電影評論情感分析 6.5.1數據準備 6.5.2網絡結構定義 6.5.3網絡訓練 6.5.4網絡預測 6.6習題 第7章深度學習進階 7.1深度生成模型 7.1.1變分自編碼器 7.1.2生成對抗網絡 7.2深度強化學習 7.2.1強化學習模型 7.2.2強化學習分類 7.2.3深度強化學習 7.2.4深度Q網絡 7.2.5深度強化學習應用 7.3遷移學習 7.3.1遷移學習的定義與分類 7.3.2遷移學習的基本方法 7.4實踐: 生成對抗網絡 7.4.1數據準備 7.4.2網絡配置 7.4.3模型訓練與預測 7.5習題 第8章深度學習應用: 計算機視覺 8.1目標檢測 8.1.1傳統目標檢測 8.1.2基于區域的卷積神經網絡目標檢測 8.1.3基于回歸的卷積神經網絡目標檢測 8.2語義分割 8.2.1傳統語義分割方法 8.2.2基于卷積神經網絡的語義分割 8.3實踐: 目標檢測 8.3.1數據準備 8.3.2網絡配置 8.3.3模型訓練 8.3.4模型預測 8.4習題 第9章深度學習應用: 自然語言處理 9.1自然語言處理的基本過程 9.1.1獲取語料 9.1.2語料預處理 9.1.3特征工程 9.2自然語言處理應用 9.2.1文本分類 9.2.2機器翻譯 9.2.3自動問答 9.3實踐: 機器翻譯 9.3.1數據準備 9.3.2網絡結構定義 9.3.3網絡訓練 9.3.4網絡預測 9.4習題 參考文獻
展開全部
深度學習導論與應用實踐 作者簡介
高隨祥(中國科學院大學)、文新(中國科學院信息工程研究所)、馬艷軍(百度)、李軒涯(百度)
書友推薦
- >
推拿
- >
自卑與超越
- >
隨園食單
- >
名家帶你讀魯迅:故事新編
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
朝聞道
- >
我與地壇
本類暢銷