-
>
闖進數(shù)學(xué)世界――探秘歷史名題
-
>
中醫(yī)基礎(chǔ)理論
-
>
當(dāng)代中國政府與政治(新編21世紀(jì)公共管理系列教材)
-
>
高校軍事課教程
-
>
思想道德與法治(2021年版)
-
>
毛澤東思想和中國特色社會主義理論體系概論(2021年版)
-
>
中醫(yī)內(nèi)科學(xué)·全國中醫(yī)藥行業(yè)高等教育“十四五”規(guī)劃教材
數(shù)據(jù)科學(xué)與數(shù)學(xué)建模 版權(quán)信息
- ISBN:9787568049351
- 條形碼:9787568049351 ; 978-7-5680-4935-1
- 裝幀:一般銅版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
數(shù)據(jù)科學(xué)與數(shù)學(xué)建模 本書特色
《數(shù)據(jù)科學(xué)與數(shù)學(xué)建模》從大數(shù)據(jù)挖掘中提煉出了科學(xué)的、可教學(xué)的、有模型的內(nèi)容,本教材從立足于理論聯(lián)系案例,從學(xué)習(xí)者的角度出發(fā),漸進式地把數(shù)據(jù)挖掘的技術(shù)和方法展示出來。本教材除了介紹算法的理論,還為每一類算法配備了具有代表性的、貼近實際應(yīng)用的典型案例,以大程度地幫助學(xué)生做到學(xué)以致用。
數(shù)據(jù)科學(xué)與數(shù)學(xué)建模 內(nèi)容簡介
本書內(nèi)容分為八章, 基本涵蓋了目前較為常用的數(shù)據(jù)科學(xué)建模方法, 包括現(xiàn)在熱門的深度學(xué)習(xí)。書中不僅介紹模型的理論基礎(chǔ), 還以大量案例結(jié)合現(xiàn)實數(shù)據(jù)為讀者展示了數(shù)據(jù)分析中常見任務(wù)的處理流程, 如分類、回歸、聚類、推薦、圖片識別等, 幫助讀者應(yīng)用這些模型和方法解決實際問題。
數(shù)據(jù)科學(xué)與數(shù)學(xué)建模 目錄
**章 緒論 6
1.1數(shù)據(jù)科學(xué)概述 6
1.2 數(shù)據(jù)科學(xué)的建模流程 8
1.3 Python語言開發(fā)環(huán)境與庫入門 12
1.3.1 開發(fā)環(huán)境 12
1.3.2 Python基本語法 15
1.3.3 Python常用庫和功能 16
1.4本書內(nèi)容介紹 19
第二章 回歸模型 21
2.1概述 21
2.2線性回歸 22
2.2.1 一元線性回歸 22
2.2.2 多元線性回歸 25
2.3線性回歸案例 28
2.3.1兒童體表面積預(yù)測 28
2.3.2波士頓房價因素分析 32
附錄:scikit-learn庫中的LinearRegression 34
2.4邏輯回歸 35
2.4.1 邏輯回歸模型 35
2.4.2 邏輯回歸方程中回歸系數(shù)的估計及含義 37
2.4.3 邏輯回歸方程的統(tǒng)計檢驗 38
2.5邏輯回歸案例 40
2.5.1考試成績預(yù)測 40
2.5.2鳶尾花分類 42
附錄:scikit-learn庫中的LogisticsRegression 44
第三章 聚類模型 46
3.1概述 46
3.1.1聚類分析概述 46
3.1.2基于距離的聚類相似度 49
3.2 K-means聚類 50
3.2.1 K-means聚類算法 50
3.2.2 K-means聚類實例 51
3.2.3 K-means聚類的優(yōu)缺點 56
3.3 密度聚類 56
3.3.1 DBSCAN密度定義 56
3.3.2 DBSCAN聚類算法 56
3.3.3 DBSCAN聚類的優(yōu)缺點 57
3.4 層次聚類 57
3.4.1系統(tǒng)聚類 58
3.4.2 DIANA算法 64
3.4.3 層次聚類算法的優(yōu)缺點 67
3.5 案例 67
3.5.1 一個二維數(shù)據(jù)集聚類 67
3.5.2一個居民家庭情況案例 69
3.5.3一個醫(yī)療建設(shè)評價案例 75
附錄:scikit-learn庫中的KMeans 77
第四章 關(guān)聯(lián)規(guī)則 80
4.1 概述 80
4.1.1 問題概述 80
4.1.2 關(guān)聯(lián)規(guī)則概述 80
4.1.3 關(guān)聯(lián)分析的基本概念 81
4.2 Apriori算法 84
4.3 基于Apriori算法的改進算法 88
4.4 FP-Growth算法 90
4.5 關(guān)聯(lián)規(guī)則案例 94
4.5.1一個銷售記錄的關(guān)聯(lián)分析案例 94
4.5.2商品購買記錄分析 98
4.5.3電影推薦 100
第五章 決策樹 104
5.1概述 104
5.1.1 決策樹基本算法 104
5.1.2 CLS算法 105
5.1.3 信息熵 106
5.2 ID3算法 107
5.2.1基本思想 107
5.2.2 ID3算法應(yīng)用實例 109
5.3 C4.5算法 112
5.3.1 基本思想 112
5.3.2 基于信息增益率建模的決策樹 113
5.4 CART算法 114
5.4.1 基本思想 114
5.4.2 基于CART算法建模的決策樹 115
5.5 決策樹的剪枝 117
5.6 案例 121
5.6.1泰坦尼克號乘客幸存預(yù)測 121
5.6.2乳腺癌診斷 125
附錄:scikit-learn庫中的DecisionTreeClassifier 129
第六章 支持向量機 132
6.1概述 132
6.2線性支持向量機 132
6.2.1 硬間隔線性支持向量機 133
6.2.2 軟間隔線性支持向量機 135
6.3非線性支持向量機 138
6.3.1特征空間硬間隔支持向量機 140
6.3.2特征空間軟間隔支持向量機 141
6.4 支持向量機的求解和多分類問題 142
6.4.1 支持向量機的求解 142
6.4.2 多分類問題 142
6.5新聞文本分類案例 144
附錄:scikit-learn庫中的SVM 147
第七章 貝葉斯網(wǎng)絡(luò) 150
7.1概述 150
7.1.1 貝葉斯網(wǎng)絡(luò)定義 150
7.1.2 貝葉斯網(wǎng)絡(luò)的知識推理模式 151
7.1.3 貝葉斯網(wǎng)絡(luò)建立的主要步驟 151
7.1.4貝葉斯網(wǎng)絡(luò)的結(jié)構(gòu)學(xué)習(xí) 152
7.1.5 貝葉斯網(wǎng)絡(luò)的參數(shù)學(xué)習(xí) 153
7.1.6 主要貝葉斯網(wǎng)絡(luò)模型 156
7.2 樸素貝葉斯網(wǎng)絡(luò) 156
7.3 TAN貝葉斯網(wǎng)絡(luò) 162
7.4 無約束貝葉斯網(wǎng)絡(luò) 167
7.5 樸素貝葉斯進行垃圾郵件過濾 170
附錄 scikit-learn庫中的Naive-Bayes分類 174
第八章 深度學(xué)習(xí) 176
8.1概述 176
8.1.1 深度學(xué)習(xí)的發(fā)展歷史 176
8.1.2 神經(jīng)網(wǎng)絡(luò)的基本模型 176
8.2多層感知機 180
8.2.1感知機 180
8.2.2多層感知機 184
8.3卷積神經(jīng)網(wǎng)絡(luò) 190
8.3.1基本網(wǎng)絡(luò)結(jié)構(gòu) 191
8.3.2反向傳播訓(xùn)練算法 192
8.3.3 AlexNet網(wǎng)絡(luò)結(jié)構(gòu) 193
8.4循環(huán)神經(jīng)網(wǎng)絡(luò) 194
8.4.1基本網(wǎng)絡(luò)結(jié)構(gòu) 195
8.4.2反向傳播訓(xùn)練算法 195
8.4.3長短時間記憶單元 196
8.5 構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)模型對CIFAR圖片數(shù)據(jù)集分類 197
附錄:TensorFlow基本用法 203
參考文獻 207
- >
唐代進士錄
- >
山海經(jīng)
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
隨園食單
- >
巴金-再思錄
- >
羅曼·羅蘭讀書隨筆-精裝
- >
月亮與六便士
- >
莉莉和章魚