-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
智能系統與技術叢書Python深度學習:基于TensorFlow 版權信息
- ISBN:9787111609728
- 條形碼:9787111609728 ; 978-7-111-60972-8
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
智能系統與技術叢書Python深度學習:基于TensorFlow 本書特色
適讀人群 :?對深度學習感興趣的大學生、研究生、在職人員等?科研院所的研究人員?其他深度學習愛好者,如產品經理、投資人等 (1)4位作者在大數據和人工智能領域有多年積累,經驗豐富; (2)從Python和數學基礎,到機器學習和TensorFlow理論,再到深度學習的應用和擴展,為深度學習提供全棧式內容解決方案; (3)包含大量實戰案例和綜合性項目案例; (4)圖形化的表達方式,降低讀者學習門檻。
智能系統與技術叢書Python深度學習:基于TensorFlow 內容簡介
本書共22章,分為三個部分。靠前部分(~5章)為Python及應用數學基礎部分,介紹Python和TensorFlow的基石Numpy,深度學習框架的鼻祖Theano,以及機器學習、深度學習算法應用數學基礎等內容。第二部分(第6~20章)為深度學習理論與應用部分,介紹機器學習的經典理論和算法,深度學習理論及方法,TensorFlow基于CPU、GPU版本的安裝及使用、TensorFlow基礎、TensorFlow的一些新API,深度學習中神經網絡方面的模型及TensorFlow實戰案例,TensorFlow的不錯封裝,TensorFlow綜合實戰案例等內容。第三部分(第21~22章)為擴展部分,介紹強化學習、生成式對抗網絡等內容。
智能系統與技術叢書Python深度學習:基于TensorFlow 目錄
**部分 Python及應用數學基礎
第1章 NumPy常用操作 2
1.1 生成ndarray的幾種方式 3
1.2 存取元素 5
1.3 矩陣操作 6
1.4 數據合并與展平 7
1.5 通用函數 9
1.6 廣播機制 11
1.7 小結 12
第2章 Theano基礎 13
2.1 安裝 14
2.2 符號變量 15
2.3 符號計算圖模型 17
2.4 函數 18
2.5 條件與循環 21
2.6 共享變量 23
2.7 小結 24
第3章 線性代數 25
3.1 標量、向量、矩陣和張量 25
3.2 矩陣和向量運算 28
3.3 特殊矩陣與向量 29
3.4 線性相關性及向量空間 31
3.5 范數 32
3.6 特征值分解 33
3.7 奇異值分解 34
3.8 跡運算 35
3.9 實例:用Python實現主成分分析 36
3.10 小結 39
第4章 概率與信息論 40
4.1 為何要學概率、信息論 40
4.2 樣本空間與隨機變量 41
4.3 概率分布 42
4.3.1 離散型隨機變量 42
4.3.2 連續型隨機變量 45
4.4 邊緣概率 47
4.5 條件概率 47
4.6 條件概率的鏈式法則 48
4.7 獨立性及條件獨立性 48
4.8 期望、方差及協方差 49
4.9 貝葉斯定理 52
4.10 信息論 53
4.11 小結 56
第5章 概率圖模型 57
5.1 為何要引入概率圖 57
5.2 使用圖描述模型結構 58
5.3 貝葉斯網絡 59
5.3.1 隱馬爾可夫模型簡介 60
5.3.2 隱馬爾可夫模型三要素 60
5.3.3 隱馬爾可夫模型三個基本問題 61
5.3.4 隱馬爾可夫模型簡單實例 62
5.4 馬爾可夫網絡 64
5.4.1 馬爾可夫隨機場 64
5.4.2 條件隨機場 65
5.4.3 實例:用Tensorflow實現條件隨機場 66
5.5 小結 70
第二部分 深度學習理論與應用
第6章 機器學習基礎 72
6.1 監督學習 72
6.1.1 線性模型 73
6.1.2 SVM 77
6.1.3 貝葉斯分類器 79
6.1.4 集成學習 81
6.2 無監督學習 84
6.2.1 主成分分析 84
6.2.2 k-means聚類 84
6.3 梯度下降與優化 85
6.3.1 梯度下降簡介 86
6.3.2 梯度下降與數據集大小 87
6.3.3 傳統梯度優化的不足 89
6.3.4 動量算法 90
6.3.5 自適應算法 92
6.3.6 有約束*優化 95
6.4 前饋神經網絡 96
6.4.1 神經元結構 97
6.4.2 感知機的局限 98
6.4.3 多層神經網絡 99
6.4.4 實例:用TensorFlow實現XOR 101
6.4.5 反向傳播算法 103
6.5 實例:用Keras構建深度學習架構 109
6.6 小結 109
第7章 深度學習挑戰與策略 110
7.1 正則化 110
7.1.1 正則化參數 111
7.1.2 增加數據量 115
7.1.3 梯度裁剪 116
7.1.4 提前終止 116
7.1.5 共享參數 117
7.1.6 Dropout 117
7.2 預處理 119
7.2.1 初始化 120
7.2.2 歸一化 120
7.3 批量化 121
7.3.1 隨機梯度下降法 121
7.3.2 批標準化 122
7.4 并行化 124
7.4.1 TensorFlow利用GPU加速 124
7.4.2 深度學習并行模式 125
7.5 選擇合適的激活函數 127
7.6 選擇合適代價函數 128
7.7 選擇合適的優化算法 129
7.8 小結 130
第8章 安裝TensorFlow 131
8.1 TensorFlow CPU版的安裝 131
8.2 TensorFlow GPU版的安裝 132
8.3 配置Jupyter Notebook 136
8.4 實例:CPU與GPU性能比較 137
8.5 實例:單GPU與多GPU性能比較 138
8.6 小結 140
第9章 TensorFlow基礎 141
9.1 TensorFlow系統架構 141
9.2 數據流圖 143
9.3 TensorFlow基本概念 144
9.3.1 張量 144
9.3.2 算子 145
9.3.3 計算圖 146
9.3.4 會話 146
9.3.5 常量 148
9.3.6 變量 149
9.3.7 占位符 153
9.3.8 實例:比較constant、variable和placeholder 154
9.4 TensorFlow實現數據流圖 156
9.5 可視化數據流圖 156
9.6 TensorFlow分布式 158
9.7 小結 160
第10章 TensorFlow圖像處理 162
10.1 加載圖像 162
10.2 圖像格式 163
10.3 把圖像轉換為TFRecord文件 164
10.4 讀取TFRecord文件 165
10.5 圖像處理實例 166
10.6 全新的數據讀取方式—Dataset API 170
10.6.1 Dataset API 架構 170
10.6.2 構建Dataset 171
10.6.3 創建迭代器 174
10.6.4 從迭代器中獲取數據 174
10.6.5 讀入輸入數據 175
10.6.6 預處理數據 175
10.6.7 批處理數據集元素 176
10.6.8 使用高級API 176
10.7 小結 177
第11章 TensorFlow神經元函數 178
11.1 激活函數 178
11.1.1 sigmoid函數 179
11.1.2 tanh函數 179
11.1.3 relu函數 180
11.1.4 softplus函數 181
11.1.5 dropout函數 181
11.2 代價函數 181
11.2.1 sigmoid_cross_entropy_with_logits函數 182
11.2.2 softmax_cross_entropy_with_logits函數 183
11.2.3 sparse_softmax_cross_entropy_with_logits函數 184
11.2.4 weighted_cross_entropy_with_logits函數 184
11.3 小結 185
第12章 TensorFlow自編碼器 186
12.1 自編碼簡介 186
12.2 降噪自編碼 188
12.3 實例:TensorFlow實現自編碼 188
12.4 實例:用自編碼預測信用卡欺詐 191
12.5 小結 197
第13章 TensorFlow實現Word2Vec 198
13.1 詞向量及其表達 198
13.2 Word2Vec原理 199
13.2.1 CBOW模型 200
13.2.2 Skim-gram模型 200
13.3 實例:TensorFlow實現Word2Vec 201
13.4 小結 206
第14章 TensorFlow卷積神經網絡 207
14.1 卷積神經網絡簡介 207
14.2 卷積層 208
14.2.1 卷積核 209
14.2.2 步幅 211
14.2.3 填充 212
14.2.4 多通道上的卷積 213
14.2.5 激活函數 214
14.2.6 卷積函數 215
14.3 池化層 216
14.4 歸一化層 217
14.5 TensorFlow實現簡單卷積神經網絡 218
14.6 TensorFlow實現進階卷積神經網絡 219
14.7 幾種經典卷積神經網絡 223
14.8 小結 224
第15章 TensorFlow循環神經網絡 226
15.1 循環神經網絡簡介 226
15.2 前向傳播與隨時間反向傳播 228
15.3 梯度消失或爆炸 231
15.4 LSTM算法 232
15.5 RNN其他變種 235
15.6 RNN應用場景 236
15.7 實例:用LSTM實現分類 237
15.8 小結 241
第16章 TensorFlow高層封裝 242
16.1 TensorFlow高層封裝簡介 242
16.2 Estimator簡介 243
16.3 實例:使用Estimator預定義模型 245
16.4 實例:使用Estimator自定義模型 247
16.5 Keras簡介 252
16.6 實例:Keras實現序列式模型 253
16.7 TFLearn簡介 255
16.7.1 利用TFLearn解決線性回歸問題 256
16.7.2 利用TFLearn進行深度學習 256
16.8 小結 257
第17章 情感分析 258
17.1 深度學習與自然語言處理 258
17.2 詞向量簡介 259
17.3 循環神經網絡 260
17.4 遷移學習簡介 261
17.5 實例:TensorFlow實現情感分析 262
17.5.1 導入數據 262
17.5.2 定義輔助函數 267
17.5.3 構建RNN模型 267
17.5.4 調優超參數 269
17.5.5 訓練模型 270
17.6 小結 272
第18章 利用TensorFlow預測乳腺癌 273
18.1 數據說明 273
18.2 數據預處理 274
18.3 探索數據 276
18.4 構建神經網絡 279
18.5 訓練并評估模型 281
18.6 小結 283
第19章 聊天機器人 284
19.1 聊天機器人原理 284
19.2 帶注意力的框架 286
19.3 用TensorFlow實現聊天機器人 289
19.3.1 接口參數說明 290
19.3.2 訓練模型 293
19.4 小結 302
第20章 人臉識別 303
20.1 人臉識別簡介 303
20.2 項目概況 306
20.3 實施步驟 307
20.3.1 數據準備 307
20.3.2 預處理數據 307
20.3.3 訓練模型 309
20.3.4 測試模型 313
20.4 小結 316
第三部分 擴展篇
第21章 強化學習基礎 318
21.1 強化學習簡介 318
21.2 強化學習常用算法 320
21.2.1 Q-Learning算法 320
21.2.2 Sarsa算法 322
21.2.3 DQN算法 322
21.3 小結 324
第22章 生成式對抗網絡 325
22.1 GAN簡介 325
22.2 GAN的改進版本 327
22.3 小結 329
智能系統與技術叢書Python深度學習:基于TensorFlow 作者簡介
作者簡介 吳茂貴 BI和大數據專家,就職于中國外匯交易中心,在BI、數據挖掘與分析、數據倉庫、機器學習等領域有超過20年的工作經驗,在Spark機器學習、TensorFlow深度學習領域大量的實踐經驗。 王冬 任職于博世(中國)投資有限公司,負責Bosch企業BI及工業4.0相關大數據和數據挖掘項目。對機器學習、人工智能有多年實踐經驗。 李濤 參與過多個人工智能項目,如研究開發服務機器人、無人售后店等項目。熟悉python、caffe、TensorFlow等,對深度學習、尤其對計算機視覺方面有較深理解。 楊本法 高級算法工程師,在機器學習、文本挖掘、可視化等領域有多年實踐經驗。熟悉Hadoop、Spark生態圈的相關技術,對Python有豐富的實戰經驗。
- >
朝聞道
- >
我從未如此眷戀人間
- >
自卑與超越
- >
羅曼·羅蘭讀書隨筆-精裝
- >
詩經-先民的歌唱
- >
月亮虎
- >
小考拉的故事-套裝共3冊
- >
李白與唐代文化