掃一掃
關(guān)注中圖網(wǎng)
官方微博
本類五星書更多>
-
>
闖進數(shù)學世界――探秘歷史名題
-
>
中醫(yī)基礎(chǔ)理論
-
>
當代中國政府與政治(新編21世紀公共管理系列教材)
-
>
高校軍事課教程
-
>
思想道德與法治(2021年版)
-
>
毛澤東思想和中國特色社會主義理論體系概論(2021年版)
-
>
中醫(yī)內(nèi)科學·全國中醫(yī)藥行業(yè)高等教育“十四五”規(guī)劃教材
LinearAIgebra線性代數(shù)英文版 版權(quán)信息
- ISBN:9787563555925
- 條形碼:9787563555925 ; 978-7-5635-5592-5
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
LinearAIgebra線性代數(shù)英文版 內(nèi)容簡介
《LINEAR ALGEBRA(線性代數(shù) 英文版)/普通高等教育“十三五”規(guī)劃教材》的主要內(nèi)容是矩陣和行列式、線性方程組、方陣的特征值和特征向量、二次型,共四個章節(jié)。第1章先引入矩陣的概念,而后介紹矩陣的基本運算和性質(zhì)、矩陣的秩和逆、方陣的行列式運算及其性質(zhì);第2章介紹線性方程組的解、向量組的線性相關(guān)性、正交基;第3章介紹方陣的特征值與特征向量,以及方陣的相似對角化;*后,第4章介紹二次型及其矩陣和將二次型化為標準型的方法。
LinearAIgebra線性代數(shù)英文版 目錄
Chapter 1 Matrices and Determinants
1.1 Matrices
1.2 Matrix Arithmetic
1.2.1 Equality
1.2.2 Scalar Multiplication
1.2.3 Matrix Addition
1.2.4 Matrix Multiplication
1.2.5 Transpose of a Matrix
1.3 Determinants of Square Matrices
1.3.1 Second Order Determinant
1.3.2 n-th Order Determinant
1.3.3 Properties of Determinants
1.3.4 Evaluation of Determinants
1.3.5 Laplace's Theorem
1.4 Block Matrices
1.4.1 The Concept of Block Matrices
1.4.2 Evaluation of Block Matrices
1.5 Invertible Matrices
1.6 Elementary Matrices
1.6.1 Elementary Operations of Matrices
1.6.2 Elementary Matrices
1.6.3 Use Elementary Operations to Get the Inverse Matrix
1.7 Rank of Matrices
1.8 Exercises
Chapter 2 Systems of Linear Equations
2.1 Systems of Linear Equations
2.2 Vectors
2.3 Linear Independence
2.3.1 Linear Combination
2.3.2 Linear Dependence and Linear Independence
2.4 Maximally Linearly Independent Vector Group
2.4.1 Equivalent Vector Sets
2.4.2 Maximally Linearly Independent Group
2.4.3 The Relationship Between Rank of Matrices and Rank of Vector Sets
2.5 Vector Space
2.6 General Solutions of Linear Systems
2.6.1 General Solutions of Homogenous Linear Systems
2.6.2 General Solutions of Non-homogenous Linear Systems
2.7 Exercises
Chapter 3 Eigenvalues and Eigenveetors
3.1 Eigenvalues and Eigenvectors
3.1.1 Definition of Eigenvalues and Eigenvectors
3.1.2 Properties of Eigenvalues and Eigenvectors
3.2 Diagonalization o{ Square Matrices
3.2.1 Similar Matrix
3.2.2 Diagonalization of Square Matrices
3.3 Orthonormal Basis
3.3.1 Inner Product of Vectors
3.3.2 Orthogonal Set and Basis
3.3.3 Gram-Schmidt Orthogonalization Process
3.3.4 Orthogonal Matrix
3.4 Diagonalization of Real Symmetric Matrices
3.4.1 Properties of Eigenvalues of Real Symmetric Matrices
3.5 Exercises
Chapter 4 Quadratic Form
4.1 Real Quadratic Form and Its Matrix
4.2 Diagonal Form of Quadratic Form
4.3 Diagonal Form of Real Quadratic Form
4.3.1 Changing Quadratic Form into Diagonal Form by Orthogonal Transformation
4.3.2 Changing Quadratic Form into Diagonal Form by the Method of Completing the Square
4.4 Canonical Form of Real Quadratic Form
4.5 Positive Definite Quadratic Form and Matrices
4.6 Exercises
References
1.1 Matrices
1.2 Matrix Arithmetic
1.2.1 Equality
1.2.2 Scalar Multiplication
1.2.3 Matrix Addition
1.2.4 Matrix Multiplication
1.2.5 Transpose of a Matrix
1.3 Determinants of Square Matrices
1.3.1 Second Order Determinant
1.3.2 n-th Order Determinant
1.3.3 Properties of Determinants
1.3.4 Evaluation of Determinants
1.3.5 Laplace's Theorem
1.4 Block Matrices
1.4.1 The Concept of Block Matrices
1.4.2 Evaluation of Block Matrices
1.5 Invertible Matrices
1.6 Elementary Matrices
1.6.1 Elementary Operations of Matrices
1.6.2 Elementary Matrices
1.6.3 Use Elementary Operations to Get the Inverse Matrix
1.7 Rank of Matrices
1.8 Exercises
Chapter 2 Systems of Linear Equations
2.1 Systems of Linear Equations
2.2 Vectors
2.3 Linear Independence
2.3.1 Linear Combination
2.3.2 Linear Dependence and Linear Independence
2.4 Maximally Linearly Independent Vector Group
2.4.1 Equivalent Vector Sets
2.4.2 Maximally Linearly Independent Group
2.4.3 The Relationship Between Rank of Matrices and Rank of Vector Sets
2.5 Vector Space
2.6 General Solutions of Linear Systems
2.6.1 General Solutions of Homogenous Linear Systems
2.6.2 General Solutions of Non-homogenous Linear Systems
2.7 Exercises
Chapter 3 Eigenvalues and Eigenveetors
3.1 Eigenvalues and Eigenvectors
3.1.1 Definition of Eigenvalues and Eigenvectors
3.1.2 Properties of Eigenvalues and Eigenvectors
3.2 Diagonalization o{ Square Matrices
3.2.1 Similar Matrix
3.2.2 Diagonalization of Square Matrices
3.3 Orthonormal Basis
3.3.1 Inner Product of Vectors
3.3.2 Orthogonal Set and Basis
3.3.3 Gram-Schmidt Orthogonalization Process
3.3.4 Orthogonal Matrix
3.4 Diagonalization of Real Symmetric Matrices
3.4.1 Properties of Eigenvalues of Real Symmetric Matrices
3.5 Exercises
Chapter 4 Quadratic Form
4.1 Real Quadratic Form and Its Matrix
4.2 Diagonal Form of Quadratic Form
4.3 Diagonal Form of Real Quadratic Form
4.3.1 Changing Quadratic Form into Diagonal Form by Orthogonal Transformation
4.3.2 Changing Quadratic Form into Diagonal Form by the Method of Completing the Square
4.4 Canonical Form of Real Quadratic Form
4.5 Positive Definite Quadratic Form and Matrices
4.6 Exercises
References
展開全部
書友推薦
- >
山海經(jīng)
- >
伯納黛特,你要去哪(2021新版)
- >
唐代進士錄
- >
名家?guī)阕x魯迅:朝花夕拾
- >
小考拉的故事-套裝共3冊
- >
二體千字文
- >
羅庸西南聯(lián)大授課錄
- >
大紅狗在馬戲團-大紅狗克里弗-助人
本類暢銷