綜放開采組合短懸臂梁-鉸接巖梁結(jié)構(gòu)形成機理與應(yīng)用 本書特色
ISBN 978-7-5020-5583-7
開本787mm×1092mm 1/16 印張16 字數(shù) 323千字
版次2017年6月第1版 2017年6月第1次印刷
社內(nèi)編號8446 定價108.00元
內(nèi)容提要
本書是研究綜放開采頂煤與頂板活動規(guī)律的專著。作者抓住綜放開采采厚大、頂板活動空間大、頂煤體力學(xué)變形特征在圍巖活動規(guī)律與“支架-圍巖”相互作用關(guān)系中起關(guān)鍵作用的特點,深入研究了綜放開采頂煤運移規(guī)律。從綜放工作面頂板控制的角度,給出了綜放開采直接頂、基本頂?shù)男露x;從上位頂板對綜放支架有無作用力的角度提出了“有變形壓力巖層”與“無變形壓力巖層”。在此基礎(chǔ)上研究了綜放開采上位巖層形成“組合短懸臂梁-鉸接巖梁結(jié)構(gòu)”的機理,得出了綜放支架工作阻力下限值的計算公式及影響因素。將此理論應(yīng)用于淺埋煤層綜放開采中,得出了不同地質(zhì)條件下覆巖所成結(jié)構(gòu)與液壓支架工作阻力下限值的確定方法。ISBN 978-7-5020-5583-7
開本787mm×1092mm 1/16 印張
16 字數(shù) 323千字
版次2017年6月第1版 2017年6月第1次印刷
社內(nèi)編號8446 定價108.00元
內(nèi)容提要
本書是研究綜放開采頂煤與頂板活動規(guī)律的專著。作者抓住綜放開采采厚大、頂板活動空間大、頂煤體力學(xué)變形特征在圍巖活動規(guī)律與“支架-圍巖”相互作用關(guān)系中起關(guān)鍵作用的特點,深入研究了綜放開采頂煤運移規(guī)律。從綜放工作面頂板控制的角度,給出了綜放開采直接頂、基本頂?shù)男露x;從上位頂板對綜放支架有無作用力的角度提出了“有變形壓力巖層”與“無變形壓力巖層”。在此基礎(chǔ)上研究了綜放開采上位巖層形成“組合短懸臂梁-鉸接巖梁結(jié)構(gòu)”的機理,得出了綜放支架工作阻力下限值的計算公式及影響因素。將此理論應(yīng)用于淺埋煤層綜放開采中,得出了不同地質(zhì)條件下覆巖所成結(jié)構(gòu)與液壓支架工作阻力下限值的確定方法。
Executive Summary
This book is on studies of movement regularities of top coal and
roof in top coal caving mining. In top coal caving mining,
mining thickness and space for roof movement is large, and top coal deforms
under mechanics. These play a key role in the interactions between
surrounding rocks and hydraulic supports. Based
on these properties, the author proposed new definitions of basic roof and
immediate roof in top coal caving, “rock strata with deformation pressure” and “rock strata
without deformation pressure” depending on whether or not forces are posed on hydraulic supports
from the strata. The author then studied the mechanism of “combined short cantilever
beams-hinged rock beams structure” formed by the upper rock strata. From
this mechanism, the author proposed the calculation formula and influence
factors on lower limit value of hydraulic supports in top coal caving. Applying the theory in top coal caving mining for shallow coal seam,
the author also proposed the determination methods on both structures of
overlying strata and the lower limit value under different geological
conditions.
This book can be used as a reference book for both college students
and field engineers in coal mining industry.
綜放開采組合短懸臂梁-鉸接巖梁結(jié)構(gòu)形成機理與應(yīng)用 目錄
目次
1 緒論
1.1 概述
1.2 綜放開采技術(shù)發(fā)展
1.3 綜放開采典型工藝模式
1.4 綜放開采礦壓顯現(xiàn)特點
1.5 綜放采場上覆巖層結(jié)構(gòu)特征研究現(xiàn)狀
1.6 綜放開采支架-圍巖關(guān)系研究現(xiàn)狀
1.7 綜放支架工作阻力的確定
2 綜放開采頂煤與頂板運移規(guī)律實測研究
2.1 鄭州米村礦15011綜放工作面頂煤與頂板運移實測
2.2 鄭州米村礦15051綜放工作面頂煤與頂板運移實測
2.3 陽泉15號煤層綜放工作面頂煤與頂板運移實測
2.4 汾西水峪礦7101綜放工作面頂煤與頂板運移實測
2.5 潞安王莊礦4309綜放工作面、大同忻州窯礦8902綜放工作面頂煤裂隙發(fā)育實測
3 綜放開采頂煤運移理論研究
3.1 綜放開采頂煤運移的理論分析
3.2 損傷力學(xué)理論在頂煤分區(qū)中的應(yīng)用
3.3 基于頂煤運移損傷力學(xué)特征的支架工作阻力的確定
4 綜放開采礦壓顯現(xiàn)規(guī)律實測研究
4.1 塔山礦綜放開采頂板活動規(guī)律
4.2 千樹塔煤礦綜放工作面礦壓顯現(xiàn)規(guī)律
5 普通埋深綜放開采相似模擬研究
5.1 相似模擬試驗設(shè)計
5.2 組合短懸臂梁-鉸接巖梁結(jié)構(gòu)的動態(tài)演化
5.3 組合短懸臂梁-鉸接巖梁結(jié)構(gòu)對礦壓的影響
5.4 組合短懸臂梁-鉸接巖梁結(jié)構(gòu)的采厚效應(yīng)
5.5 組合短懸臂梁-鉸接巖梁結(jié)構(gòu)的割煤高度效應(yīng)
5.6 小結(jié)
6榆神礦區(qū)綜放開采相似模擬研究
6.1 相似模擬試驗?zāi)P偷慕?6.2 綜放工作面覆巖活動規(guī)律的埋深效應(yīng)
6.3 綜放工作面覆巖活動規(guī)律的采厚效應(yīng)
6.4 綜放工作面覆巖活動規(guī)律的基巖厚度效應(yīng)
6.5 綜放工作面覆巖活動規(guī)律的基采比效應(yīng)
6.6 小結(jié)
7基于綜放開采頂板結(jié)構(gòu)特征的支架工作阻力的確定
7.1 綜放工作面直接頂、基本頂新概念
7.2 綜放支架工作阻力下限值計算
7.3 其他特殊綜放開采頂板結(jié)構(gòu)支架工作阻力的計算
7.4 綜放支架工作阻力影響因素分析
7.5 小結(jié)
8綜放支架工作阻力下限值確定的現(xiàn)場應(yīng)用
8.1 塔山礦8105綜放工作面的應(yīng)用
8.2 千樹塔煤礦11305綜放工作面的應(yīng)用
參考文獻
后記
Contents
1 Introduction
1.1 Overview
1.2 Technology development of fully mechanized top
coal caving
1.3 Typical process mode of fully mechanized top coal
caving
1.4 Characteristics of strata behaviors in fully
mechanized top coal caving
1.5 Research status on structures of overlying
strata over fully mechanized topcoal caving area
1.6 Research status on relations between hydraulic supports and
surrounding rocks in fully mechanized top coal caving
1.7 Determination of working resistance of hydraulic supports for
fully mechanized top coal caving
2 Field study on movement regularities of
top coal and roof in fully mechanized top coal caving
2.1 Field measurement of movement of coal and roof at No. 15011 Fully Mechanized Top Coal Caving Face in Micun Coal Mine,
Zhengzhou City
2.2 Field measurement of movement of top coal and roof at No. 15051 Fully Mechanized Top Coal Caving Face in Micun Coal Mine,
Zhengzhou City
2.3 Field measurement of movement of top coal and roof at No. 15 Fully Mechanized Top Coal Caving Face at Yangquan Coal Mine
2.4 Field measurement of movement of top coal at No. 7101 Fully Mechanized Top Coal Caving Face in Shuiyu Coal Mine,
Fenxi City
2.5 Field measurement of fracture development in top coal at No. 4309 Fully Mechanized Top Coal Caving Face in Wangzhuang Coal Mine,
Lu’an City and at No. 8902 Fully Mechanized Top Coal Caving Face in
Xinzhouyao Coal Mine, Datong City
3 Theoretical study on top coal movement in
fully mechanized top coal caving
3.1 Theoretical analysis of top coal movement in
fully mechanized caving mining
3.2 Application of damage mechanics theory in top
coal division
3.3 Establishing top coal movement equation with damage
mechanics theory
4 Field study of strata behavior in fully
mechanized top coal caving mining
4.1 Field reseach on roof movement in fully mechanized top coal caving
mining in Tashan Coal Mine
4.2 Field reseach on strata behavior in fully mechanized top coal
caving face in Qianshuta Coal Mine
5 Analog simulation study on fully
mechanized top coal caving mining
5.1 Analog simulation test design
5.2 Dynamic evolution of the “combined short cantilever rock beams-articulated
rock beams” structure
5.3 The effection of “combined short cantilever rock beams-articulated
rock beams” structure on mine pressure
5.4 Effection on cutting thickness of “combined short cantilever rock beams-articulated
rock beams” structure
5.5 Effection on cutting height of “combined short cantilever rock beams-articulated
rock beams” structure
5.6 Chapter summary
6 Similarity simulation study of fully
mechanized top coal caving mining in Yushen mining area
6.1 Establishment of similarity simulation
experimental model
6.2 Effect of burial depth on overlying strata movement at working
face in fully mechanized top coal caving
6.3 Effect of mining thickness on overlying strata movement at working
face in fully mechanized top coal caving
6.4 Effect of bedrock thickness on overlying strata movement at
working face in fully mechanized top coal caving
6.5 Effect of ratio of bedrock thickness and mining thickness on
overlying strata movement at working face in fully mechanized top coal caving
6.6 Chapter summary
7 Determination of working resistance of support based
on structural characteristics of roof in fully mechanized top coal caving
mining
7.1 New concept of immediate roof and basic roof in fully mechanized
top coal caving mining area
7.2 Lower limit calculation of working resistance of hydraulic support
in fully mechanized caving
7.3 Calculation of working resistance for caving support in other
special roof structure in fully mechanized top coal caving mining
7.4 Analysis on influential factors on working resistance of fully
mechanized top coal caving support
7.5 Chapter summary
8 Field application of working resistance lower limit
determination for fully mechanized caving support
8.1 No. 8105 fully mechanized top
coal caving working face in Tashan Coal Mine
8.2 No. 11305 fully mechanized
top coal caving working face in Qianshuta Coal Mine
References
Postscript
展開全部